什么是幸存者偏差,你又如何去解决?

图源:unsplash.com

前些天有空闲时,无意中看到了《天龙八部》中的这一段:

 虚竹低头道:“说也惭愧,尊师中毒之初,脸上现出古怪笑容,我以小人之心,妄加猜度,还道尊师不怀善意,倘若当时便即坦诚问他,尊师立加救治,便不致到这步田地了。”康广陵摇头道:“这‘三笑逍遥散’一中在身上,便难解救。丁老贼所以能横行无忌,这‘三笑逍遥散’也是原因之一。人家都知道‘化功大法’的名头,只因为中了‘化功大法’功力虽失,尚能留下一条性命来广为传播,一中‘三笑逍遥散’,却是一瞑不视了。”

死人不会说话。可是,细思之后,这不就是幸存者偏差吗?就好比最出名的刺客,往往不是最成功的刺客

信息的不对称或者不完整,使人们对一件事情的判断出现了差错。


什么是幸存者偏差?


幸存者偏差(英语:survivorship bias),是一种认知偏差,其逻辑谬误一般表现为过分关注一个人在某些特定的情况下幸存了下来,而忽略了未被看见的或者那些未幸存下来的人。

其谬论是:BC的能力,在恶劣情况下,B存活了下来,所以任何人只要有C这种能力,那么就可以在同种情况下存活。

错在哪里呢?错在没有考虑到有C的能力,却无法在同等情况下幸存的人。也就是说,只把幸存者筛选了出来,却没有去讨论没有幸存的人。归根结底,也就是筛选过程出现了错误。

幸存改为成功,那么只去搜集那些成功的案例,而忽略或不去统计到失败的案例,在这个基础上得出的结果,有可能存在偏差,进而导致结论的错误。



那就说一下我当年听过的故事吧

图源:unsplash.com

某某年的世界杯,小组赛已经结束。这时你收到了一封电子邮件,信中称他发现了一种预测足球比赛结果的科学方法,准确率达到100%!!!为了让你相信他,他决定免费提供1/8决赛的预测结果。然后他预测第一场比赛将是A队胜。

你删了这封邮件,因为你知道可以根据双方的实力、状态等因素猜测比赛结果,但是想要场场都猜对是不可能的。

第一场比赛的结果是A队胜,但你知道这很可能是巧合,乱猜也有50%的可能性猜对。

然后你收到了第二封邮件,又对了。第三封、第四封……全部都说对了。如果是随机乱猜,全部说对的概率仅有1/256,你怀疑此人真的发现了能预测比赛结果的方法。

过后,他又发来一封邮件,要你向他的支付宝转1千,然后才告诉你下一场比赛的预测结果。犹豫片刻,你把钱交了,得到预测结果却和比赛结果不一致,而你再也没有收到他的邮件。



事实上,这只是一个低成本的骗局。只要买一份含500万个电子邮件的名单,给其中的一半发邮件预测A胜,另一半预测B胜。根据比赛结果,再把预测成真的那一半分成两半,分别预测CD胜。依此类推,最终总有人获得场场准确的预测结果。

如果收到的邮件,恰巧是全部预测都是对的,如果你相信了,那么,此时,幸存者偏差就出现了。你就是那个幸存者,你不知道他是用如此简单粗暴的方法把你筛选出来,你认为他的的确确找到了那个方法,想着你可以凭借这个机会大攒一笔,那你就错得离谱了。

生活中也有这样的例子。你一定会遇见别人吹嘘读书无用论,然后列举了好几个例子,都是高中没毕业,大学没上过,攒了多少多少的大钱,生活过得有多滋润。然后末尾来了一句,读书有个屁用啊。

这是个谬论,用些许特例替代了整体,在没有充分考虑到那些没读书,过得碌碌无为,平庸至极的人是如何生活下去的;没有用整体的平均水平来说理,使得论点不合理。


那么,该如果解决幸存者偏差呢?


《穷查理宝典》中记录了查理独特的思考方式,他思考问题总是从逆向开始。

如果要明白人生如何才能得到幸福,查理首先会研究人生如何才能变得痛苦;要研究企业如何做强大,查理首先研究企业是如何衰败的;大部分人更关心如何在股市投资上成功,查理最关心的却是为什么在股市投资上大部分人都失败了。

这就像是,我只想知道将来我会死在什么地方,这样我就永远不去那儿了这句话所蕴含的哲理。虽然听起来很可笑,但是却蕴含了最朴素的智慧。

在生活中,能践行“逆向思考”的人却屈指可数。

所有人都试图修正麦克斯韦的电磁定律,让它能够符合牛顿的三大运动定律。爱因斯坦却截然相反,他修正了牛顿的定律,让其符合麦克斯韦的定律,结果他发现了相对论。达尔文他总是寻求各种各样的证据来否定他原有的理论,不论那些理论多么的得之不易。

想要避免幸存者偏差,不防试试逆向思考。是的,我认为逆向思考是最好的解决方法。出现幸存者偏差,原因也不过是以偏概全,忽视了别的信息。 我们想一个问题时,陷进死胡同就不想了,却没有想着反过来想想,再推导一下。逆向思考能让你打开你的视野,看到别人没有看到的东西,了解到别人没有接触过的事物。

反过来想,总是反过来想。

图源:unsplash.com

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,723评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,485评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,998评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,323评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,355评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,079评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,389评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,019评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,519评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,971评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,100评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,738评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,293评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,289评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,517评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,547评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,834评论 2 345

推荐阅读更多精彩内容