Python量化教程:量化风险

今天,我们将介绍非常重要的一部分:风险的量化。我们会从原理以及Python实战两个角度来学习。

我们开始今天的内容。

一、方差

1952年,Markowitz发表了均值-方差投资组合理论,在这套理论中他正式提出了用方差来描述资产收益不确定性的方法,也就是资产风险的方差度量法。

为什么我们可以用方差来度量风险呢?我解释一下方差的原理你就知道了。

\sigma^2(R) = E((R-E(R))^2)

这里R是指所有的收益率序列(真实或预估),E(R)是指收益率的期望。有些朋友可能对期望不太熟悉,所以我们换个表达方式。假如我们有一组已知的长度为n的收益率数据R,那么它们的方差为:

S^2(R) = \frac{1}{n-1} \sum^{n}_{i-1}{(R_i - \overline{R})^2}

相当于每个收益率数据与平均收益率之间距离的平方的均值。简单来说,我们可以理解为收益率相对于均值的波动情况。方差越大,波动越大,风险也就越大,潜在的收益往往也越高。

随着风险理论的实践与发展,这种方法被发现了很大的弊端。首先,这个定义不能与风险完全等同,因为向上的剧烈波动也会造成方差偏高,但是这种波动是我们所希望发生的,能使我们获益;其次,Markowitz的均值-方差投资组合理论有一个重要假设,那就是收益率是符合正态分布的,但是现实中的金融产品收益率往往具有明显的偏度和峰度,仅仅使用方差来度量有可能会产生较大的误差。

假如我们已经获取到了一组收益率数据R,在Python中,我们可以很多方法来计算方差,这里我们用numpypandas来示范一下如何计算方差和标准差(方差的平方根):

# 使用numpy
import numpy as np
R = [0.01, 0.05, 0.02, -0.03]
var1 = np.var(R)
std1 = np.std(R)

# 使用pandas
import pandas as pd
R = pd.Series([0.01, 0.05, 0.02, -0.03])
var2 = R.var()
std2 = R.std()

二、下行风险

同样是1952年,Roy发表了用下行偏差来度量风险的方法。这个方法解决了前边我们提到的方差度量法的问题,它主要关注向下的波动。计算下行偏差时,一个最重要的变量就是目标收益率,通常用可接受的最低收益率代表(MARR,Minimum Acceptable Rate of Return)。我们常用无风险收益率、0或者资产收益率的平均值作为MARR。下行偏差描述的就是低于MARR的收益率的发散程度,其计算方式为:

\delta(R,MARR) = \sqrt{\frac{1}{n} \sum^{n}_{i=1}{(min(R - MARR, 0))^2}}

也就是说,收益率大于MARR的部分全都会被抹平为0,小于MARR的部分会正常进行计算。这样的话,得到的下行偏差中不包含向上波动的成分,仅仅代表了资产价值下行的风险。包括方差度量法的创始人Markowitz都承认下行风险是一个更好的衡量方式。

那么我们来看一下如何用Python计算下行风险,我们先用tushare来获取万科和中国平安近两年的行情数据。

import pandas as pd
import tushare as ts

pro = ts.pro_api()
wanke = pro.daily(ts_code='000002.SZ', start_date='20170101')
pingan = pro.daily(ts_code='601318.SH', start_date='20170101')

wanke.head()
image

然后,分别计算万科和平安的下行风险:

def cal_downside_risk(r):
    _r = r.map(lambda x: x / 100)
    mean = _r.mean()
    r_adjust = _r.map(lambda x: min(x-mean, 0))
    risk = np.sqrt((r_adjust ** 2).mean())
    return risk
    
wanke_risk = cal_downside_risk(wanke.pct_chg)
pingan_risk = cal_downside_risk(pingan.pct_chg)

print('万科下行风险:', wanke_risk)
print('平安下行风险:', pingan_risk)
image

看起来万科的下行风险更大一些,因为它的收益率在均值下方的波动更大一些。在上边的代码中,我们先将收益率转换为小数(tusahre中为了便于观察,提供了百分点数据),然后实现了我们前边提供的下行风险计算公式。这部分如果有不能理解的可以留言。注意,这里函数的输入参数是 一个pandas Series对象。

三、风险价值

1994年,投行巨头摩根大通公开发表了用风险价值(Value at Risk,VaR)度量风险的方法。其定义为:VaR是给定的置信水平目标时段下预期的最大损失。用公式表达为:

Pr(X_t < -Var(\alpha, \Delta{t})) = \alpha \%

其中,随机变量Xt是金融资产或资产组合在时间段t内的价值变动量,Pr代表概率,这个公式的含义是,在时间段t内,我们的损失比VaR(α,t)还大的的概率为α%。也就是说,想要计算风险价值,我们必须要先清楚收益率的概率分布。那么我们如何计算收益率的概率分布呢?

常见的方法有历史模拟法、协方差矩阵法以及蒙特卡洛模拟法。

1. 历史模拟法

这个方法最为简单。以单日、5%置信区间为例,我们直接取历史上每天的收益率数据,得到其数据分布。然后我们找到95%的置信区间中(在这里取最大的95%即可)最小的那个收益率,然后乘以我们的初始资产价值,就是我们预估的VaR了。

这种方法假定未来的波动与历史波动一致,但事实上金融市场瞬息万变,很多风险因素并不能从历史数据中发掘出来。历史模拟法一般需要至少1500个数据样本,否则会导致VaR不太可靠;另外太过久远的数据意义也不大。

2. 协方差矩阵法

协方差矩阵法主要用于投资组合的风险预估。它假设各资产的收益率服从正态分布,且各资产的收益率与资产组合的收益率之间呈线性关系,这样投资组合的收益率也服从正态分布。然后我们通过历史数据中各资产的收益率均值、方差、协方差矩阵,可以估计出投资组合的均值及方差,这样就得到了投资组合的收益率分布。

这里由于我们只有投资组合的均值和方差,且我们假设投资组合的收益率也符合正态分布,所以我们可以通过正态分布的概率模型来找到VaR。我们对收益率数据做过标准化之后可以将其转化为z分数,z分数是符合标准正态分布的。然后从分布中找到1-α%的置信区间内的最小值(即α%分位数),我们用Zα来表示它,然后将其代入计算z分数的公式求解出对应的收益率。

z=\frac{x-\mu}{\sigma}\\ Z_{\alpha} = \frac{\frac{-VaR}{W} - \mu}{\sigma}\\ VaR = -(Z_{\alpha} + \mu)

3. 蒙特卡洛方法

又称随机抽样或统计试验方法,是一种随机模拟方法。蒙特卡洛方法在模型构建合理、参数选择正确时会更加精确可靠,甚至能处理非线性、收益率非正态分布的情况;但是它依赖特定的随机过程和所选择的历史数据,并且产生的随机数据序列是伪随机数,可能会导致结果误差较大,而且计算量大、计算时间长。

如果读者对于自助采样法(Bootstrap)有所了解的话,会发现他们之间有一些关联。蒙特卡洛方法假定了数据的分布,但是自助法不需要有任何数据假设,它直接从原始数据中进行再抽样。这部分我们暂时了解即可,之后会找时间专门讲解。

那么接下来我们就使用刚才万科和平安的数据,用Python来实战一下。

# 历史模拟法
wanke_var = wanke.pct_chg.quantile(0.05) / 100
pingan_var = pingan.pct_chg.quantile(0.05) / 100
print('历史模拟法')
print('万科VaR(0.05,1天):', wanke_var)
print('平安VaR(0.05,1天):', pingan_var)

# 协方差矩阵法
from scipy.stats import norm

wanke_var = norm.ppf(0.05, wanke.pct_chg.mean(), 
                     wanke.pct_chg.std()) / 100
pingan_var = norm.ppf(0.05, pingan.pct_chg.mean(), 
                      pingan.pct_chg.std()) / 100
print('协方差矩阵法')
print('万科VaR(0.05,1天):', wanke_var)
print('平安VaR(0.05,1天):', pingan_var)
image

image

可以看到,两种方法都表明万科的VaR更高,即在95%的置信区间下,万科的最大损失更高。

我们来解释一下代码,pandas Series对象的quantile()方法会返回分位数,在前边我们已经明确,历史模拟法计算VaR直接求0.05分位数即可;pandas Series对象的mean()方法和std()方法分别返回其均值和标准差;scipy.stats.norm函数可以根据我们输入的置信区间、均值和标准差来求得对应的分位数。

四、期望亏空

期望亏空(Expected)是VaR(风险价值)的变体,是学术界提出来用于弥补VaR理论上的缺点。前边我们提到,风险价值是1-α%置信区间内最大的亏损,也就是从小到大第α%百分位数。

那么期望亏空不是第α%位置对应的收益率,而是最小的α%中所有收益率的均值。

我们仍然以万科近两年的收益率数据为例:

VaR_wanke = wanke.pct_chg.quantile(0.05)
ES_wanke = wanke.query('pct_chg <= @VaR_wanke')['pct_chg'].mean()

print('万科近两年风险价值:', VaR_wanke)
print('万科近两年期望亏空:', ES_wanke)
image

可以看到,期望亏空是比风险价值更低的。理论上,期望亏空≤风险价值永远成立。

五、最大回撤

最大回撤(Maximum Drawdown,MDD)是非常常用的用来衡量投资(尤其是基金)表现的手段,它代表了投资人可能遇到的最大亏损。最大回撤非常好理解,首先,资产在时刻t的回撤是指在(0,t)期间的最高峰值到T时刻的资产价值Pt之间的回落值;而最大回撤,就是在最高峰值之后一直到T时刻,中间有一个最低点,从峰值到最低点的回落值就是最大回撤。回撤值占最高价值的比例就是回撤率。

比如说,2018年以来A股的最高点是3587.03,上一个交易日(2019-01-04)的收盘价为2514.87,那么2019-01-04的回撤率为:(3587.03-2514.87)/3587.03=29.89%,刚好最低点也出现在2019-01-04,所以最大回撤率为(3587.03-2440.91)/3587.03=31.95%。

image

但是有些时候我们拿到的数据并不是资产价值的数据序列,而是收益率的序列,那我们应该如何计算最大回撤呢?

从时刻0到时刻T的回撤值(这里的回撤值类似基金净值的回撤值)为:

D(T) = max \left\lbrace 0, \mathop{max}_{t\in{(0,T)}} \prod_{k=1}^{t}{(1 + R_k)} - \prod_{k=1}^{T}{(1+R_k)} \right\rbrace

相应的回撤率为:

d(T) = \frac{D(T)}{max_{t \in (0,T)} \prod_{k=1}^{t}(1+R_k)}

用LaTeX手打一个公式太慢了……所以最大回撤即最大回撤率的公式就不给大家展示了,留给大家自己练习一下。其算法是找到毛收益率(1+Rt)累乘的最大值,这里就是峰值了,假设这一时刻是k,那么我们就接着找从k到T之间毛利率累乘的最小值,然后计算两者的差异占最高值的比例,就是最大回撤率了。

多说无益,我们直接来看代码实战,还是以上证综指18年以来的数据为例,先获取数据:

import pandas as pd
import tushare as ts

pro = ts.pro_api()
index_sh = pro.index_daily(ts_code='000001.SH', start_date='20180101')
index_sh.index = pd.to_datetime(index_sh.trade_date)
index_sh = index_sh.sort_index(ascending=True)
index_sh.head()
image

在这里我们将交易日期转换为了时间序列数据,并且作为了我们DataFrame的索引。然后我们开始求18年以来的收益趋势:

value = (index_sh.pct_chg / 100 + 1).cumprod()
value.plot();
image

可以看到,几乎从头跌到尾……

然后我们开始计算最大回撤率:

MDD = (value.cummax() - value).max()
print('最大回撤:', MDD)

mdd = ((value.cummax() - value) / value.cummax()).max()
print('最大回撤率:', mdd)
image

可以看到,这里我们计算的最大回撤率是30.77%,与刚才我们手动计算的31.95%并不一致,为什么呢?

这是因为,这里我们是使用的收益率数据,而收益率数据都是以收盘价计算的,这里我们损耗了最高价、最低价的信息,所以我们看到的最大回撤率比实际情况稍低。不过对于基金净值、组合资产等,我们一般也更关注收盘价数据,对于盘中的波动相对来说没有那么重视。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,271评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,275评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,151评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,550评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,553评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,559评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,924评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,580评论 0 257
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,826评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,578评论 2 320
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,661评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,363评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,940评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,926评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,156评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,872评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,391评论 2 342

推荐阅读更多精彩内容