Python 详解雷达图/蛛网图

雷达图-pyecharts

蛛网图,最早知道是在玩FIFA游戏的时候,球员的能力用蛛网图来表示与比较,那时觉得非常新鲜。后来,在实际的工作中,其实很少用到:一方面,直接提供蛛网图的工具少;另一方面,过往的经历中多维度比较用到的地方也比较少。

在学习Python的过程中,重新燃起对雷达图的兴趣,但在python重要的图库MatplotlibSeaborn里都没有直接实现雷达图的函数。因此,虽然感兴趣,也没有去触及,直到一天在Udacity数据分析进阶VIP班的一个学生的Tableau作业里看到他使用了雷达图(Tableau图库里也没有直接提供雷达图),使我饶有兴趣地去思考雷达图到底是什么?

最初的想法

最初的想法,在直角坐标系通过画圆的方式寻找多边形在圆轴上点的坐标,只要知道半径r长度,以及原点与圆周上的点的连线与X轴的夹角\theta便能通过三角函数求出x与y 的坐标。

向量.png

半径r可看作是一个向量。向量是一个方向,向量中的每一个元素代表着维度,维度的值是维度方向的距离。直角坐标系由x轴,y轴及原点组成的二维空间,x是一个维度,x的值在x轴方向上与原点之间的距离,y是另一个维度,同样的,y的值则是在y轴方向上与原点的距离,x与y平行移动的交汇点为坐标,坐标点与原点的连线是x轴与y轴上的两个两个向量的相加所形成的新向量,暂命名为A向量,A向量的长度为r,围绕着原点旋转便能形成一个以原点为圆心,r为半径的圆,根据A向量与x轴行程的角度\theta 总能得出A向量在x轴上的长度为x = \cos\theta \times r,在y轴上的长度为y = \sin\theta \times r,由此,可以得出该在圆上的任意一个点的坐标(x,y)。

假设雷达图由6个维度构成,那么最初躺在x轴上的向量r相当于旋转了6次,每次旋转60º在圆周上留下一个点,点与点之间的连线构成了雷达图。那么,使用折线图便能实现雷达图

突然醒悟

仔细翻读Matplotlib的范例,看到了polar坐标系,突然想明白:为什么不直接旋转X坐标轴呢?将直角坐标系中的X轴首尾相连绕成了一个圆,将x轴的线性的长度转换成了弧长,Y轴不变,在此之下的折线图就是雷达图,仅此而已。想明白了,生成雷达图便成了轻而易举之事。接下来,将详细解释雷达图编写的过程。

用Python绘制雷达图

pyechart用python语言制作了一系列流行的图,其中包括雷达图。我将其雷达图的截图放在了本文的最顶端。然而pyechart只是用Python语言生成的Java,应用在html里。当然,在实际应用中,用网页显示与观众的互动性更强,如果用网页作为仪表盘,显然使用pyechart就好了。但在这里,我期望去了解雷达图的原理,因此借用pyechart-雷达图 示例中的数据,用Matplotlib 来重现。

用Matplotlib 绘制的雷达图

这是使用Matplotlib画出的结果,除了不会动态显示数据以外,长相与pyechart的雷达图基本保持了一致,过程并不复杂。接下来,将分步骤展现实现的过程与代码。

Python分步骤实现雷达图

1. 范例数据

schema = [ 
("销售", 6000),
("管理", 16000),
("信息技术", 30000),
("客户服务", 38000),
("研发", 52000), 
("市场", 25000)
]
v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]

schema 中包含标签与6个维度分别的总分,v1、v2可能是2个部门分别按6个维度打分的结果。整理数据,首先抽出labels, 然后对v1、v2 进行归一(标准化,normalize),将分值转化为比率,或百分制。

# 拆分schema到标签labs与总分full_marks
labs = []
full_marks = []
for value in schema:
    labs.append(value[0])
    full_marks.append(value[1])

# v1,v2进行归一处里
Y = np.vstack((v1,v2))          
Y = Y/np.array(full_marks)

print('labs = {}'.format(labs))
print('Y = {}'.format(Y))
--------------------------------------------------------------------------
Output:
labs = ['销售', '管理', '信息技术', '客户服务', '研发', '市场']
Y = [[ 0.71666667  0.625       0.93333333  0.92105263  0.96153846  0.76      ]
 [ 0.83333333  0.875       0.93333333  0.81578947  0.80769231  0.84      ]]

2. X轴变形

x轴上所呈现的应该是labs,用labs的index来作为x轴上的坐标,由于x轴将由一根直线首尾相接成圆,原先x轴上的点离原点的距离r将相应地换算为弧长L,每一维度间所间隔的角度 \theta由维度N决定,将圆周长切分成N个等份的弧度。弧长的计算公式为: L =2 r \times \pi \times \frac{\theta}{360}

# 获取 r 与 theta
N = len(labs)
r = np.arange(N) 
theta = np.linspace(0, 360, N, endpoint=False) 

# 将角度转化为单位弧度
X_ticks = np.radians(theta) # x轴标签所在的位置

print(' N = {:d}, \n r = {}, \n theta = {}, \n X_ticks = {}'.format(N, r, theta, X_ticks))
-------------------------------------------------------------------
Output:
N = 6, 
r = [0 1 2 3 4 5], 
theta = [   0.   60.  120.  180.  240.  300.], 
X_ticks = [ 0.      1.0472  2.0944  3.1416  4.1888  5.236 ]

3. 制图1

简单地转换一下X轴的数值,然后设置坐标系为“polar”,雷达图应该就能被制作出来了。

fig, ax = plt.subplots(subplot_kw=dict(projection='polar'))
ax.plot(X_ticks, Y[0], marker='o')
ax.plot(X_ticks, Y[1], marker='o')
ax.set_xticks(X_ticks)
plt.show()
首次尝试

首次尝试的雷达图有一些问题:

  1. 联线缺了一个口,需要将数列的第一个数字增补到最后一个,使得首位相连;
  2. 图像看起来有些歪,正中点在水平线上,尤其是单数维度时。因此需要旋转图像,使得正中点在垂直线上。

4. 调整

# 获取 r 与 theta
N = len(labs)
r = np.arange(N) 
theta = np.linspace(0, 360, N, endpoint=False) 

# 调整角度使得正中在垂直线上
adj_angle = theta[-1] + 90 - 360
theta += adj_angle

# 将角度转化为单位弧度
X_ticks = np.radians(theta) # x轴标签所在的位置

# 首尾相连
X = np.append(X_ticks,X_ticks[0])
Y = np.hstack((Y, Y[:,0].reshape(2,1)))

print('theta = {}, \nX = {}, \nY={}'.format(theta, X.round(4), Y.round(2)))
-------------------------------------------------------------------------
Output:
theta = [  30.   90.  150.  210.  270.  330.], 
X = [ 0.5236  1.5708  2.618   3.6652  4.7124  5.7596  0.5236], 
Y=[[ 0.72  0.62  0.93  0.92  0.96  0.76  0.72]
 [ 0.83  0.88  0.93  0.82  0.81  0.84  0.83]]

所有的角度增加了30º,X与Y轴的首尾的数字都已相同,雷达图应该就绪。

二次尝试

执行与首次制图时相同的代码,只是把X_ticks与Y替换成调整后的X与Y,雷达图的内里已经全部出来了,与pyechart雷达图的图形一致,现在还差一些形状与数据标签。

5. 背景制作

fig, ax = plt.subplots(figsize=(5, 5),
                             subplot_kw=dict(projection='polar'))
# 画图
ax.plot(X, Y[0], marker='o')
ax.plot(X, Y[1], marker='o')
ax.set_xticks(X)

# 设置背景坐标系
ax.set_xticklabels(labs, fontproperties = labFont, fontsize = 'large') # 设置标签
ax.set_yticklabels([]) 
ax.spines['polar'].set_visible(False) # 将轴隐藏
ax.grid(axis='y') # 只有y轴设置grid


# 设置X轴的grid
n_grids = np.linspace(0,1, 6, endpoint=True) # grid的网格数
grids = [[i] * (len(X)) for i in n_grids] #grids的半径

for i, grid in enumerate(grids[:-1]): # 给grid 填充间隔色
    ax.plot(X, grid, color='grey', linewidth=0.5)
    if (i>0) & (i % 2 == 0):
        ax.fill_between(X, grids[i], grids[i-1], color='grey', alpha=0.1) 

plt.show()
接近成功

基本上成功了,就差一个轴 (sprine) 的设置,非常抱歉没有弄懂Matplotlib如何去设置轴的形状,不过好在他的范例中给出了雷达图的函数代码,运行这段函数,向figure中的projection注册了这段代码后,将上文的代码中的'polar' 改为'radar'便大功告成了。重写的完整代码如下:

# 调用Radar图函数
N = len(labs)
theta = radar_factory(N, frame='polygon')

fig, ax = plt.subplots(figsize=(5, 5),
                             subplot_kw=dict(projection='radar'))
# 画图
ax.plot(X, Y[0], marker='o')
ax.plot(X, Y[1], marker='o')
ax.set_xticks(X)

# 设置背景坐标系
ax.set_xticklabels(labs, fontproperties = labFont, fontsize = 'large') # 设置标签
ax.set_yticklabels([]) 
ax.spines['polar'].set_visible(False) # 将轴隐藏
ax.grid(axis='y') # 只有y轴设置grid


# 设置X轴的grid
n_grids = np.linspace(0,1, 6, endpoint=True) # grid的网格数
grids = [[i] * (len(X)) for i in n_grids] #grids的半径

for i, grid in enumerate(grids[:-1]): # 给grid 填充间隔色
    ax.plot(X, grid, color='grey', linewidth=0.5)
    if (i>0) & (i % 2 == 0):
        ax.fill_between(X, grids[i], grids[i-1], color='grey', alpha=0.1) 

plt.show()

结果已在前述展示过了,不再重复。


参考:
Radar chart (aka spider or star chart) https://matplotlib.org/gallery/specialty_plots/radar_chart.html?highlight=radar

pyechart-雷达图 http://pyecharts.org/#/zh-cn/charts_base?id=radar(雷达图)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,126评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,254评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,445评论 0 341
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,185评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,178评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,970评论 1 284
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,276评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,927评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,400评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,883评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,997评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,646评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,213评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,204评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,423评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,423评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,722评论 2 345

推荐阅读更多精彩内容

  • 1 前言 OpenGL渲染3D模型离不开空间几何的数学理论知识,而本篇文章的目的就是对空间几何进行简单的介绍,并对...
    RichardJieChen阅读 6,934评论 1 11
  • 一前言 特征值 奇异值 二奇异值计算 三PCA 1)数据的向量表示及降维问题 2)向量的表示及基变换 3)基向量 ...
    Arya鑫阅读 10,494评论 2 43
  • 1 CALayer IOS SDK详解之CALayer(一) http://doc.okbase.net/Hell...
    Kevin_Junbaozi阅读 5,128评论 3 23
  • 窗外淅淅沥沥的下着小雨,怎么迈不动出门的脚步?窗帘低垂,一片粉色,细雨如丝,朦朦胧胧,思绪,也不知所以,飘浮不定。...
    趣爱阅读 140评论 0 0
  • 异乡 埋葬着不同的姓氏 在田头山间 不安的灵魂无处徘徊 放出脆弱的纸鸢 飘摇着 寻向死去的自己 一场雨 未肯洒落悲...
    瓦缝里的星空阅读 162评论 0 0