蛛网图,最早知道是在玩FIFA游戏的时候,球员的能力用蛛网图来表示与比较,那时觉得非常新鲜。后来,在实际的工作中,其实很少用到:一方面,直接提供蛛网图的工具少;另一方面,过往的经历中多维度比较用到的地方也比较少。
在学习Python
的过程中,重新燃起对雷达图的兴趣,但在python重要的图库Matplotlib
与Seaborn
里都没有直接实现雷达图的函数。因此,虽然感兴趣,也没有去触及,直到一天在Udacity数据分析进阶VIP班的一个学生的Tableau
作业里看到他使用了雷达图(Tableau
图库里也没有直接提供雷达图),使我饶有兴趣地去思考雷达图到底是什么?
最初的想法
最初的想法,在直角坐标系通过画圆的方式寻找多边形在圆轴上点的坐标,只要知道半径长度,以及原点与圆周上的点的连线与X轴的夹角便能通过三角函数求出x与y 的坐标。
半径可看作是一个向量。向量是一个方向,向量中的每一个元素代表着维度,维度的值是维度方向的距离。直角坐标系由x轴,y轴及原点组成的二维空间,x是一个维度,x的值在x轴方向上与原点之间的距离,y是另一个维度,同样的,y的值则是在y轴方向上与原点的距离,x与y平行移动的交汇点为坐标,坐标点与原点的连线是x轴与y轴上的两个两个向量的相加所形成的新向量,暂命名为A向量,A向量的长度为r,围绕着原点旋转便能形成一个以原点为圆心,r为半径的圆,根据A向量与x轴行程的角度 总能得出A向量在x轴上的长度为,在y轴上的长度为,由此,可以得出该在圆上的任意一个点的坐标(x,y)。
假设雷达图由6个维度构成,那么最初躺在x轴上的向量相当于旋转了6次,每次旋转60º在圆周上留下一个点,点与点之间的连线构成了雷达图。那么,使用折线图便能实现雷达图。
突然醒悟
仔细翻读Matplotlib
的范例,看到了polar坐标系,突然想明白:为什么不直接旋转X坐标轴呢?将直角坐标系中的X轴首尾相连绕成了一个圆,将x轴的线性的长度转换成了弧长,Y轴不变,在此之下的折线图就是雷达图,仅此而已。想明白了,生成雷达图便成了轻而易举之事。接下来,将详细解释雷达图编写的过程。
用Python绘制雷达图
pyechart
用python语言制作了一系列流行的图,其中包括雷达图。我将其雷达图的截图放在了本文的最顶端。然而pyechart
只是用Python
语言生成的Java
,应用在html
里。当然,在实际应用中,用网页显示与观众的互动性更强,如果用网页作为仪表盘,显然使用pyechart
就好了。但在这里,我期望去了解雷达图的原理,因此借用pyechart-雷达图 示例中的数据,用Matplotlib
来重现。
这是使用Matplotlib
画出的结果,除了不会动态显示数据以外,长相与pyechart
的雷达图基本保持了一致,过程并不复杂。接下来,将分步骤展现实现的过程与代码。
Python分步骤实现雷达图
1. 范例数据
schema = [
("销售", 6000),
("管理", 16000),
("信息技术", 30000),
("客户服务", 38000),
("研发", 52000),
("市场", 25000)
]
v1 = [[4300, 10000, 28000, 35000, 50000, 19000]]
v2 = [[5000, 14000, 28000, 31000, 42000, 21000]]
schema 中包含标签与6个维度分别的总分,v1、v2可能是2个部门分别按6个维度打分的结果。整理数据,首先抽出labels
, 然后对v1、v2 进行归一(标准化,normalize),将分值转化为比率,或百分制。
# 拆分schema到标签labs与总分full_marks
labs = []
full_marks = []
for value in schema:
labs.append(value[0])
full_marks.append(value[1])
# v1,v2进行归一处里
Y = np.vstack((v1,v2))
Y = Y/np.array(full_marks)
print('labs = {}'.format(labs))
print('Y = {}'.format(Y))
--------------------------------------------------------------------------
Output:
labs = ['销售', '管理', '信息技术', '客户服务', '研发', '市场']
Y = [[ 0.71666667 0.625 0.93333333 0.92105263 0.96153846 0.76 ]
[ 0.83333333 0.875 0.93333333 0.81578947 0.80769231 0.84 ]]
2. X轴变形
x轴上所呈现的应该是labs,用labs的index来作为x轴上的坐标,由于x轴将由一根直线首尾相接成圆,原先x轴上的点离原点的距离将相应地换算为弧长,每一维度间所间隔的角度 由维度决定,将圆周长切分成个等份的弧度。弧长的计算公式为:
# 获取 r 与 theta
N = len(labs)
r = np.arange(N)
theta = np.linspace(0, 360, N, endpoint=False)
# 将角度转化为单位弧度
X_ticks = np.radians(theta) # x轴标签所在的位置
print(' N = {:d}, \n r = {}, \n theta = {}, \n X_ticks = {}'.format(N, r, theta, X_ticks))
-------------------------------------------------------------------
Output:
N = 6,
r = [0 1 2 3 4 5],
theta = [ 0. 60. 120. 180. 240. 300.],
X_ticks = [ 0. 1.0472 2.0944 3.1416 4.1888 5.236 ]
3. 制图1
简单地转换一下X轴的数值,然后设置坐标系为“polar”,雷达图应该就能被制作出来了。
fig, ax = plt.subplots(subplot_kw=dict(projection='polar'))
ax.plot(X_ticks, Y[0], marker='o')
ax.plot(X_ticks, Y[1], marker='o')
ax.set_xticks(X_ticks)
plt.show()
首次尝试的雷达图有一些问题:
- 联线缺了一个口,需要将数列的第一个数字增补到最后一个,使得首位相连;
- 图像看起来有些歪,正中点在水平线上,尤其是单数维度时。因此需要旋转图像,使得正中点在垂直线上。
4. 调整
# 获取 r 与 theta
N = len(labs)
r = np.arange(N)
theta = np.linspace(0, 360, N, endpoint=False)
# 调整角度使得正中在垂直线上
adj_angle = theta[-1] + 90 - 360
theta += adj_angle
# 将角度转化为单位弧度
X_ticks = np.radians(theta) # x轴标签所在的位置
# 首尾相连
X = np.append(X_ticks,X_ticks[0])
Y = np.hstack((Y, Y[:,0].reshape(2,1)))
print('theta = {}, \nX = {}, \nY={}'.format(theta, X.round(4), Y.round(2)))
-------------------------------------------------------------------------
Output:
theta = [ 30. 90. 150. 210. 270. 330.],
X = [ 0.5236 1.5708 2.618 3.6652 4.7124 5.7596 0.5236],
Y=[[ 0.72 0.62 0.93 0.92 0.96 0.76 0.72]
[ 0.83 0.88 0.93 0.82 0.81 0.84 0.83]]
所有的角度增加了30º,X与Y轴的首尾的数字都已相同,雷达图应该就绪。
执行与首次制图时相同的代码,只是把X_ticks与Y替换成调整后的X与Y,雷达图的内里已经全部出来了,与pyechart
雷达图的图形一致,现在还差一些形状与数据标签。
5. 背景制作
fig, ax = plt.subplots(figsize=(5, 5),
subplot_kw=dict(projection='polar'))
# 画图
ax.plot(X, Y[0], marker='o')
ax.plot(X, Y[1], marker='o')
ax.set_xticks(X)
# 设置背景坐标系
ax.set_xticklabels(labs, fontproperties = labFont, fontsize = 'large') # 设置标签
ax.set_yticklabels([])
ax.spines['polar'].set_visible(False) # 将轴隐藏
ax.grid(axis='y') # 只有y轴设置grid
# 设置X轴的grid
n_grids = np.linspace(0,1, 6, endpoint=True) # grid的网格数
grids = [[i] * (len(X)) for i in n_grids] #grids的半径
for i, grid in enumerate(grids[:-1]): # 给grid 填充间隔色
ax.plot(X, grid, color='grey', linewidth=0.5)
if (i>0) & (i % 2 == 0):
ax.fill_between(X, grids[i], grids[i-1], color='grey', alpha=0.1)
plt.show()
基本上成功了,就差一个轴 (sprine) 的设置,非常抱歉没有弄懂Matplotlib
如何去设置轴的形状,不过好在他的范例中给出了雷达图的函数代码,运行这段函数,向figure中的projection注册了这段代码后,将上文的代码中的'polar' 改为'radar'便大功告成了。重写的完整代码如下:
# 调用Radar图函数
N = len(labs)
theta = radar_factory(N, frame='polygon')
fig, ax = plt.subplots(figsize=(5, 5),
subplot_kw=dict(projection='radar'))
# 画图
ax.plot(X, Y[0], marker='o')
ax.plot(X, Y[1], marker='o')
ax.set_xticks(X)
# 设置背景坐标系
ax.set_xticklabels(labs, fontproperties = labFont, fontsize = 'large') # 设置标签
ax.set_yticklabels([])
ax.spines['polar'].set_visible(False) # 将轴隐藏
ax.grid(axis='y') # 只有y轴设置grid
# 设置X轴的grid
n_grids = np.linspace(0,1, 6, endpoint=True) # grid的网格数
grids = [[i] * (len(X)) for i in n_grids] #grids的半径
for i, grid in enumerate(grids[:-1]): # 给grid 填充间隔色
ax.plot(X, grid, color='grey', linewidth=0.5)
if (i>0) & (i % 2 == 0):
ax.fill_between(X, grids[i], grids[i-1], color='grey', alpha=0.1)
plt.show()
结果已在前述展示过了,不再重复。
参考:
Radar chart (aka spider or star chart) https://matplotlib.org/gallery/specialty_plots/radar_chart.html?highlight=radar
pyechart-雷达图 http://pyecharts.org/#/zh-cn/charts_base?id=radar(雷达图)