hive窗口函数总结

一:前言

根据官网的介绍,hive推出的窗口函数功能是对hive sql的功能增强,确实目前用于离线数据分析逻辑日趋复杂,很多场景都需要用到。以下就是对hive窗口函数的一个总结附上案例。

二:理解下什么是WINDOW子句(灵活控制窗口的子集)

PRECEDING:往前
FOLLOWING:往后
CURRENT ROW:当前行
UNBOUNDED:起点(一般结合PRECEDING,FOLLOWING使用)
UNBOUNDED PRECEDING 表示该窗口最前面的行(起点)
UNBOUNDED FOLLOWING:表示该窗口最后面的行(终点)
比如说:
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW(表示从起点到当前行)
ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING(表示往前2行到往后1行)
ROWS BETWEEN 2 PRECEDING AND 1 CURRENT ROW(表示往前2行到当前行)
ROWS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING(表示当前行到终点)
官网有一段话列出了哪些窗口函数是不支持window子句的,如下图所示:


image.png

三:准备需要演示的数据

insert overwrite table dw_tmp.window_function_temp
select 
split(detail,',')[0] as uname
,split(detail,',')[1] as create_time
,split(detail,',')[2] as pv
from
(
    select
    concat('测试用户,2019-10-02,7
    #测试用户,2019-10-05,4
    #测试用户,2019-10-07,5
    #测试用户,2019-10-03,6
    #测试用户,2019-10-04,3
    #测试用户,2019-10-01,3
    #测试用户,2019-10-06,4') as ct_str
) t
lateral view explode(split(ct_str,'#')) t2 as detail;
测试数据.png

四:Windowing functions

1.LEAD(col,n,DEFAULT) 用于统计窗口内往下第n行值第一个参数为列名,第二个参数为往下第n行(可选,默认为1,不可为负数),第三个参数为默认值(当往下第n行为NULL时候,取默认值,如不指定,则为NULL)

2.LAG(col,n,DEFAULT) 用于统计窗口内往上第n行值第一个参数为列名,第二个参数为往上第n行(可选,默认为1,不可为负数),第三个参数为默认值(当往上第n行为NULL时候,取默认值,如不指定,则为NULL)

select 
uname
,create_time
,pv
,lead(pv,1,-9999) over (partition by uname order by create_time) as lead_1_pv
,lag(pv,1,-9999) over (partition by uname order by create_time) as lag_1_pv
from dw_tmp.window_function_temp;
image.png

3.FIRST_VALUE取分组内排序后,截止到当前行,第一个值,这最多需要两个参数。第一个参数是您想要第一个值的列,第二个(可选)参数必须是false默认为布尔值的布尔值。如果设置为true,则跳过空值。

4.LAST_VALUE取分组内排序后,截止到当前行,最后一个值,这最多需要两个参数。第一个参数是您想要第一个值的列,第二个(可选)参数必须是false默认为布尔值的布尔值。如果设置为true,则跳过空值。

select 
uname
,create_time
,pv
,first_value(pv) over (partition by uname order by create_time rows between unbounded preceding and current row) as first_value_pv
,last_value(pv) over (partition by uname order by create_time rows between unbounded preceding and current row) as last_value_pv
from dw_tmp.window_function_temp;
image.png

让我们加上window子句来观察一下变化,虽然FIRST_VALUE和LAST_VALUE不常于与window子句结合使用。

select 
uname
,create_time
,pv
,first_value(pv) over (partition by uname order by create_time) as first_value_pv
,first_value(pv) over (partition by uname order by create_time rows between unbounded preceding and current row) as window_first_value_pv
,last_value(pv) over (partition by uname order by create_time) as last_value_pv
,last_value(pv) over (partition by uname order by create_time rows between unbounded preceding and current row) as window_last_value_pv
from dw_tmp.window_function_temp;
image.png

五:aggregates functions

1.COUNT
2.SUM
3.MIN
4.MAX
5.AVG
目前支持这五种带有聚合意义的窗口函数,以常用SUM举例。

select 
uname
,create_time
,pv
,SUM(pv) over (partition by uname order by create_time) as sum_pv_1 --默认情况
,SUM(pv) over (partition by uname order by create_time ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW) as sum_pv_2 --表示从起点到当前行
,SUM(pv) over (partition by uname) as sum_pv_3 --表示窗口内所有行
,SUM(pv) over (partition by uname order by create_time ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING) as sum_pv_4 --表示起点到终点
,SUM(pv) over (partition by uname order by create_time ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING) as sum_pv_5 --表示前2行到后面1行
from dw_tmp.window_function_temp;
image.png

从结果当中其实可以得到结论,默认情况就是从起点到当前行,不带order by语句其实就是表示窗口内全部行都参与聚合处理,这里其实还有其他用法,读者可以自行尝试一下。

六:Analytics functions

1.ROW_NUMBER
从1开始,按照顺序,生成分组内记录的序列,row_number()的值不会存在重复,当排序的值相同时,按照表中记录的顺序进行排列;通常用于获取分组内排序第一的记录;获取一个session中的第一条refer等。
2.RANK
生成数据项在分组中的排名,排名相等会在名次中留下空位。
3.DENSE_RANK
生成数据项在分组中的排名,排名相等会在名次中不会留下空位。
4.CUME_DIST
CUME_DIST 小于等于当前值的行数/分组内总行数
5.PERCENT_RANK
PERCENT_RANK 分组内当前行的RANK值-1/分组内总行数-1
6.NTILE
NTILE(n) 用于将分组数据按照顺序切分成n片,返回当前切片值,如果切片不均匀,默认增加第一个切片的分布。NTILE不支持ROWS BETWEEN
以上是带有分析功能的窗口函数,使用的频率没有上面两类高,但是也是需要掌握的。

我们先对1-3三种分析窗口函数进行演示

select 
uname
,create_time
,pv
,ROW_NUMBER() over (partition by uname order by pv) as row_number_pv_1
,RANK() over (partition by uname order by pv) as row_number_pv_2
,DENSE_RANK() over (partition by uname order by pv) as row_number_pv_3
from dw_tmp.window_function_temp;
image.png

第4-5种:

select 
uname
,create_time
,pv
,CUME_DIST() over (partition by uname order by pv) as CUME_DIST_pv_
,PERCENT_RANK() over (partition by uname order by pv) as PERCENT_RANK_pv_
from dw_tmp.window_function_temp;
image.png

第六种:NTILE

select 
uname
,create_time
,pv
,NTILE(2) over (partition by uname order by pv) as NTILE_pv_1
,NTILE(3) over (partition by uname order by pv) as NTILE_pv_2
,NTILE(4) over (partition by uname order by pv) as NTILE_pv_3
from dw_tmp.window_function_temp;
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容