Hive窗口函数总结

准备数据

CREATE TABLE lxy (cookieid INT, create_time STRING, pv INT) 
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ',';
LOAD DATA INPATH '/user/chenlinlin2156233/lxy.csv';
SELECT * FROM lxy;

查看结果


返回表格

SUM(), MIN(),MAX(),AVG()等聚合函数

对一定窗口期内的数据进行聚合

SELECT *, 
SUM(a.pv) OVER (PARTITION BY cookieid ORDER BY create_time ROWS BETWEEN 3 PRECEDING AND CURRENT ROW) AS pv1,
SUM(a.pv) OVER (PARTITION BY cookieid ORDER BY create_time ROWS BETWEEN 2 PRECEDING AND 1 FOLLOWING) AS pv2
FROM lxy AS a;

在这里根据cookieid进行分组,然后按照create_time进行分组,选择不同的窗口进行一定函数的聚合运算。
基本的语法是ROWS BETWEEN 一个时间点 AND 一个时间点
时间点分别可以是以当前行作为参考系,前面几行n PRECEDING或者是后面几行n FOLLOWING,也可以是当前行CURRENT ROW。总之可以想象有一个滑动窗口,我们可以规定一个滑动窗口的中心位置和大小,然后每次画过一个步长,计算一次窗口内的值。

求解窗口期内的数据的总和

新增加序号列NTILE, ROW_NUMBER(), RANK(), DENSE_RANK()

我们先来试试看这几个函数的实际返回结果。


数据源
SELECT *, 
NTILE(3) OVER (PARTITION BY cookid2 ORDER BY pv) AS n1,
ROW_NUMBER() OVER (PARTITION BY cookid2 ORDER BY pv) AS n2,
RANK() OVER (PARTITION BY cookid2 ORDER BY pv) AS n3,
DENSE_RANK() OVER (PARTITION BY cookid2 ORDER BY pv) AS n4
FROM lxy3;
返回结果

我们可以看到,对于NTILE函数,传入的参数n是指要切分成多少份,返回对应的序号,ROW_NUMBER()则是生成一列连续的序号,RANK()与ROW_NUMBER()类似,只是对于数值相同的这一项会同时为相同的序号,下一个序号跳过,比如倒数第二列当中有出现4,4,6没有5;而DENSE_RANK()则相反,会紧跟着下一个是紧接着的序号,比如4,4,5。

LAG, LEAD, FIRST_VALUE, LAST_VALUE

这几个函数可以通过字面意思记得,LAG是迟滞的意思,也就是对某一列进行往后错行;LEAD是LAG的反义词,也就是对某一列进行提前几行;FIRST_VALUE是对该列到目前为止的首个值,而LAST_VALUE是到目前行为止的最后一个值。
仍旧是这张表


lx3
SELECT *,
LAG(pv, 2) OVER(PARTITION BY cookid2 ORDER BY log_date) AS lag1,
LEAD(pv, 2, 0) OVER(PARTITION BY cookid2 ORDER BY log_date) AS lead1,
FIRST_VALUE() OVER(PARTITION BY cookid2 ORDER BY log_date) AS first_pv,
FIRST_VALUE() OVER(PARTITION BY cookid2 ORDER BY log_date) AS last_pv,
LAST_VALUE() OVER(PARTITION BY cookid2 ORDER BY log_date) AS current_last_pv
FROM lxy3;
返回结果

LAG和LEAD里面都是传入三个参数,分别是排序的列名,滞后/往前的行数,以及默认填充值。因为我们在这里的LEAD()里面设置默认填充值为0,所以对于cookid后面两行缺失值填充为0。
如果我们要返回每个分组下排序后的最后一个数,可以对该组进行DESC的操作,注意ORDER BY对返回的结果很有影响。

SELECT *,
FIRST_VALUE() OVER(PARTITION BY cookid2 ORDER BY pv DESC) AS first_pv
FROM lxy3; 

GROUPING SET, CUBE, ROLL UP

我们先准备一张表格

CREATE EXTERNAL TABLE lxw1234 (
month STRING,
day STRING, 
cookieid STRING 
) ROW FORMAT DELIMITED 
FIELDS TERMINATED BY ',' 
LOCATION '/user/chenlinlin2156233/lxy2/';
创建表格
SELECT * FROM lxw1234;
返回结果

从上面看到我们已经成功导入了一张外部表。
GROUPING SET(key1, key2)相当于是对不同字段进行group操作以后,再进行union all的操作。

SELECT month,
day,
count(DISTINCT cookieid) AS count_id,
GROUPING__ID
FROM lxw1234
GROUP BY month, day
GROUPING SETS(month, day)
ORDER BY GROUPING__ID;
返回结果

在这里注意,

  1. GROUPING_ID是自动生成的,是进行了GROUPING_SET()的操作之后。
  2. 下划线有两个
  3. 需要先做GROUP BY操作再传入GROUPING SETS
    等价于先group再union all的做法
SELECT month,NULL,COUNT(DISTINCT cookieid) AS uv,1 AS GROUPING__ID FROM lxw1234 GROUP BY month 
UNION ALL 
SELECT NULL,day,COUNT(DISTINCT cookieid) AS uv,2 AS GROUPING__ID FROM lxw1234 GROUP BY day
UNION ALL 
SELECT month,day,COUNT(DISTINCT cookieid) AS uv,3 AS GROUPING__ID FROM lxw1234 GROUP BY month,day
等价效果实现

CUBE就是比以上的GROUPING SETS多了一个两列的整合,也就是笛卡尔乘积。

SELECT month,
day,
count(DISTINCT cookieid) AS count_id,
GROUPING__ID
FROM lxw1234
GROUP BY month, day
WITH CUBE
ORDER BY GROUPING__ID;
返回结果

假如我们把上面的代码里面的CUBE改成了ROLL UP,我们看下会返回什么结果。

SELECT month,
day,
count(DISTINCT cookieid) AS count_id,
GROUPING__ID
FROM lxw1234
GROUP BY month, day
WITH ROLLUP
ORDER BY GROUPING__ID;
rollup返回的结果

可以看到,这个时候就不会返回以右边为关键字的聚合结果,只是返回左边的键以及笛卡尔乘积的结果。
我们如果换一下聚合的关键字month和day的顺序呢?

SELECT month,
day,
count(DISTINCT cookieid) AS count_id,
GROUPING__ID
FROM lxw1234
GROUP BY day, month
WITH ROLLUP
ORDER BY GROUPING__ID;

交换关键字以后的返回结果

从上面结果可以看到,关键字的顺序对rollup的结果也是很有影响的。
以上就是所学习hive窗口函数的总结。

参考资源

以上总结主要参考该博客

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容

  • 一:前言 根据官网的介绍,hive推出的窗口函数功能是对hive sql的功能增强,确实目前用于离线数据分析逻辑日...
    愤怒的谜团阅读 22,401评论 0 10
  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,443评论 0 13
  • 这一周主要学习了 Hive 的一些基础知识,学习了多个 Hive 窗口函数,虽然感觉这些窗口函数没有实际的应用...
    大石兄阅读 2,716评论 2 8
  • pyspark.sql module Module context Spark SQL和DataFrames中的重...
    盗梦者_56f2阅读 5,404评论 0 19
  • 分析函数,也称为窗口函数,通常被认为仅对数据仓库SQL有用。使用分析函数的查询,基于对数据行的分组来计算总量值。与...
    猫猫_tomluo阅读 3,305评论 3 18