矩阵乘法问题

问题描述

给定n个矩阵:A1,A2,...,An,其中Ai与Ai+1是可乘的,i=1,2...,n-1。确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少。


矩阵乘法的顺序安排

对于图像处理来说,矩阵运行是中必不可少的重要数学方法,另外在神经网络、模式识别等领域也有着广泛的用途。在这里就先来简单复习一下矩阵的相关知识:


矩阵乘法

在矩阵乘法中,第一个矩阵的行数和第二个矩阵的列数必须是相同的。先来看一个简单的例子:

之所以这样要求,是因为矩阵的乘法定义中,就要求了,第一个矩阵每一行和第二个矩阵每一列相对应位置的数字做乘的操作:

如果A矩阵是p×q的矩阵,B是q×r的矩阵,那么乘积C是p×r的矩阵。它们一共计算了p×q×r次。

以下是一段计算两个矩阵乘积的标准算法:

void matrixMultiply(int[][] matrixA, int[][] matrixB,int[][] matrixC,int ra, int ca, int rb, int cb) {
    if (ca != cb) {
        System.err.println("矩阵不可乘!");
        return;
    }   // end if

    for (int i = 0; i < ra; i++) {
        for (int j = 0; j < cb; j++) {
            int sum = matrixA[i][0] * matrixB[0][j];
            for (int k = 0; k < ca; k++) {
                sum += matrixA[i][k] * matrixB[k][j];
            }   // end for
            matrixC[i][j] = sum;
        }
    }
}

顺序安排

假设给定3个矩阵,A、B、C,它们的规模分别是10×100、100×5和5×50。

  • 如果按照((AB)C)的顺序计算:
    为计算AB(规模10×5),需要做10×100×5=5000次标量乘法,再与C相乘又需要做10×5×50=2500次标量乘法, 共需要7500次标量乘法。
  • 如果按照(A(BC))的顺序计算:
    为计算BC(规模100×50),需要做100×5×50=25000次标量乘法,再与A相乘又需要做10×100×50=50000次标量乘法,共需要75000次标量乘法。

因此,按第一种顺序计算矩阵连乘要比第二种顺序快10倍。所以,进行一些计算来确定最有顺序还是值得的。


动态规划法

设mLeft,Right是进行矩阵乘法ALeftALeft+1···ARight-1ARight所需要的乘法次数。为一致起见,mLeft,Left=0。设最后的乘法是(ALeft···Ai)(Ai+1ARight),其中 Left ≤ i ≤ Right。

此时所用的乘法次数为:mLeft,i + mi+1,Right + cLeft-1cicRight这三项分别代表计算(ALeft···Ai)、(Ai+1ARight)以及它们的乘积所需要的乘法。除了最后的答案,还要显示实际的乘法顺序,所以我们还要记录i的值,由此得到以下算法:

public static void optMatrix(int[] c, long[][] m, int[][] lastChange) {
    int n = c.length - 1;

    for (int left = 0; left < n; left++) {
        m[left][left] = 0;
    }
    for (int k = 1; k <= n; k++) {
        for (int left = 1; left <= n - k; left++) { // k is right - left,即子问题规模
            // For each postion
            int right = left + k;
            m[left][right] = INFINITY;              // 置为无穷大
            for (int i = left; i < right; i++) {    // i为断开位置
                long thisCost = m[left][i] + m[i + 1][right] +
                        c[left - 1] * c[i] * c[right];

                if (thisCost < m[left][right]) {    // Update min
                    m[left][right] = thisCost;
                    lastChange[left][right] = i;
                }
            }
        }   // end inner for
    }   // end outer for
}

这个程序包含三重嵌套循环,容易看出它以O(N3)时间运行。这里其实有更快地算法,但由于执行具体矩阵乘法的时间仍然很可能会比计算最有顺序的乘法的时间多得多,所以这个算法还是挺实用的。

欢迎转载,转载请注明出处!
简书ID:@我没有三颗心脏
github:wmyskxz
欢迎关注公众微信号:wmyskxz_javaweb
分享自己的Java Web学习之路以及各种Java学习资料

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容