11. Hash Tables 1

A hash table is a generalization of the simpler notion of an ordinary array.

Direct addressing is a simple technique that works well when the universe U of the keys (all possible values of k) is reasonably small.

Operations on direct-address tables

we use a direct-address table, denoted by T[0..m−1], in which each position, or slot, corresponds to a key in the universe U .

  1. DIRECT ADDRESS SEARCH(T,k) return T [k]
  2. DIRECT ADDRESS INSERT(T,x) T [key[x]] ← x
  3. DIRECT ADDRESS DELETE(T,x) T[key[x]] ← NIL

Hash tables

With hashing, the element is stored in slot h(k),
i.e., we use a hash function h to compute the slot for the element using key k, where h maps the universe U of keys into the slots of a hash table T [0. . m − 1].

  1. We say that an element with key k hashes to slot h(k).
  2. We also say that h(k) is the hash value of key k.

Notice that with direct addressing, an element with key k is stored in slot k, which is a very special hash table.

The drawback of any hash tables

The drawback of any hash tables is the collision when two different keys are mapped to the same slot.

One effective way to resolve collisions is called chaining, which works as follows: Put all elements that hash to the same slot in a linked list.

Operations on hash tables

The directory operations on a hash table T are easy to implement when collisions are resolved by chaining.

  1. CHAINED HASH SEARCH(T,k)
    search for an element with key k in the linked list T [h(k)]
  2. CHAINED HASH INSERT(T,x)
    insert x at the head of the linked list T[h(key[x])]
  3. CHAINED HASH DELETE(T,x)
    delete x from the linked list T [h(key[x])]

Analysis of simple uniform hashing with chaining

A simple uniform hashing assumes that any given element is equally likely to hash into any of the m slots, independently of where any other element has hashed to.

The average behavior of hashing under the simple uniform hashing assumption is much better, which takes Θ(1 + α) time.

Let the hash table contain m slots. For j = 0,...,m−1, denote by nj the length of the linked list T[j], so that n=n0+n1+...+n m−1, and the average value of nj is E[nj] = α = n/m.


the relationship between the load factor α and the time of searching/deletion of an element:Θ(1 + α)

Case 1: Unsuccessful search for key k:
The linked list T ( j) for hash value h(k) (= j) has to traversed. The expected length of
T(j) is E[nj] = α = n/m.
Case 2: Successful search for key k: Let ki = key[xi]. For keys ki and kj, denote by
Xij = I{h(ki) = h(kj)} a random variable. Pr{h(ki) = h(kj)} = 1/m. Thus, E[Xij] = 1/m.

The amount of time spent on this linked list (to identify k(i)) is proportional to the number of keys before it in the linked list, while the probability of a key k(j) in front of key k(i) in the linked list with j > i is 1/m.

The average time complexity of successful search for key ki thus is

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容

  • **2014真题Directions:Read the following text. Choose the be...
    又是夜半惊坐起阅读 9,363评论 0 23
  • 我是个害羞男孩。 一 第一次的遇见是在车站,我记不清入口和出口的方向,我是一条彻头彻尾的路癌,我辨识不了人们口中的...
    方成学长阅读 629评论 1 4
  • 花了近5个月,终于读完了孙皓晖先生这部500余万字的皇皇巨著。已经很久没有这么酣畅淋漓地读大部头了,说实话,这部书...
    开火箭的拖拉机阅读 364评论 0 2
  • 1.学到的重要概念: 听力材料中说话的人用一个一个的单词来表达重要的信息,要听其中的标志单词。 2.让我怦然心...
    114靳玉芳阅读 416评论 5 0
  • 农历腊月初八,外婆走了,从此世界上少了一位慈祥的老人,妈妈失去了养育她的母亲,我失去了疼爱自己的外婆! 阳历201...
    一颗浮萍阅读 772评论 3 2