一、目的
1、修改顶点着色器让三角形上下颠倒;
2、使用uniform定义一个水平偏移量,在顶点着色器中使用这个偏移量把三角形移动到屏幕右侧。
二、程序运行结果
三、OpenGL着色器语言(GLSL)
着色器是使用一种叫GLSL的类C语言写成的。GLSL是为图形计算量身定制的,它包含一些针对向量和矩阵操作的有用特性。
着色器的开头总是要声明版本,接着是输入和输出变量、uniform和main函数。每个着色器的入口点都是main函数,在这个函数中我们处理所有的输入变量,并将结果输出到输出变量中。
四、输入与输出
虽然着色器是各自独立的小程序,但是它们都是一个整体的一部分,出于这样的原因,我们希望每个着色器都有输入和输出,这样才能进行数据交流和传递。
GLSL定义了in和out关键字专门来实现这个目的。每个着色器使用这两个关键字设定输入和输出,只要一个输出变量与下一个着色器阶段的输入匹配,它就会传递下去。但在顶点和片段着色器中会有点不同。
如果我们打算从一个着色器向另一个着色器发送数据,我们必须在发送方着色器中声明一个输出,在接收方着色器中声明一个类似的输入。当类型和名字都一样的时候,OpenGL就会把两个变量链接到一起,它们之间就能发送数据了(这是在链接程序对象时完成的)。
五、Uniform
Uniform是一种从CPU中的应用向GPU中的着色器发送数据的方式,但uniform和顶点属性有些不同。首先,uniform是全局的(Global)。全局意味着uniform变量必须在每个着色器程序对象中都是独一无二的,而且它可以被着色器程序的任意着色器在任意阶段访问。第二,无论你把uniform值设置成什么,uniform会一直保存它们的数据,直到它们被重置或更新。
六、代码解析
1、顶点坐标的 Y 值 乘以 -1,即 使三角形反转。(图形向量转换)
2、 渲染阶段,在程序中设定offset 值,传送给着色器。
3、glGetUniformLocation方法:获取着色器程序中,指定为uniform类型变量的id。
4、glUniform1f(GLint location, GLfloat v0); location指明要更改的uniform变量的位置;v0指明在指定的uniform变量中要使用的新值。
5、offset = 0.5
glUniform1f(glGetUniformLocation(self.program, "xOffset"), offset);将0.5的值赋给GLSL程序中的xOffset变量。
七、源代码
"""
glfw_Triangle03.py
Author: dalong10
Description: use GLSL and Draw a Triagle, learning OPENGL
"""
import glutils #Common OpenGL utilities,see glutils.py
import sys, random, math
import OpenGL
from OpenGL.GL import *
from OpenGL.GL.shaders import *
import numpy
import numpy as np
import glfw
strVS = """
#version 330 core
layout (location = 0) in vec3 aPos;
layout (location = 1) in vec3 aColor;
out vec3 ourColor;
uniform float xOffset;
void main()
{
gl_Position = vec4(aPos.x + xOffset, -aPos.y, aPos.z, 1.0); // add the xOffset to the x position of the vertex position
ourColor = aColor;
}
"""
strFS = """
#version 330 core
out vec3 color;
void main(){
color = vec3(1,0,0);
}
"""
class FirstTriangle:
def __init__(self, side):
self.side = side
# load shaders
self.program = glutils.loadShaders(strVS, strFS)
glUseProgram(self.program)
s = side/2.0
vertices = [
-s, -s, 0,
s, -s, 0,
0, s, 0
]
# set up vertex array object (VAO)
self.vao = glGenVertexArrays(1)
glBindVertexArray(self.vao)
# set up VBOs
vertexData = numpy.array(vertices, numpy.float32)
self.vertexBuffer = glGenBuffers(1)
glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
glBufferData(GL_ARRAY_BUFFER, 4*len(vertexData), vertexData,
GL_STATIC_DRAW)
#enable arrays
self.vertIndex = 0
glEnableVertexAttribArray(self.vertIndex)
# set buffers
glBindBuffer(GL_ARRAY_BUFFER, self.vertexBuffer)
glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, 0, None)
# unbind VAO
glBindVertexArray(0)
def render(self):
# use shader
glUseProgram(self.program)
offset = 0.5
glUniform1f(glGetUniformLocation(self.program, "xOffset"), offset);
# bind VAO
glBindVertexArray(self.vao)
# draw
glDrawArrays(GL_TRIANGLES, 0, 3)
# unbind VAO
glBindVertexArray(0)
if __name__ == '__main__':
import sys
import glfw
import OpenGL.GL as gl
def on_key(window, key, scancode, action, mods):
if key == glfw.KEY_ESCAPE and action == glfw.PRESS:
glfw.set_window_should_close(window,1)
# Initialize the library
if not glfw.init():
sys.exit()
# Create a windowed mode window and its OpenGL context
window = glfw.create_window(640, 480, "glfw_Triangle03", None, None)
if not window:
glfw.terminate()
sys.exit()
# Make the window's context current
glfw.make_context_current(window)
# Install a key handler
glfw.set_key_callback(window, on_key)
# Loop until the user closes the window
while not glfw.window_should_close(window):
# Render here
width, height = glfw.get_framebuffer_size(window)
ratio = width / float(height)
gl.glViewport(0, 0, width, height)
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
gl.glClearColor(0.0,0.0,4.0,0.0)
firstTriangle0 = FirstTriangle(1.0)
# render
firstTriangle0.render()
# Swap front and back buffers
glfw.swap_buffers(window)
# Poll for and process events
glfw.poll_events()
glfw.terminate()