9、“路程”就是“距离”吗?
这两个词在许多老师的教学语言中是替代使用的,其实不然。
“路程”是指从一个地点到另一个地点所经过路线的长度;而“距离”则指连接两个地点而成的直线段的长度。
可以看到,“路程”所经过的路线可以是曲形线,也可以是直形线,还可能是折形线。一般情况下,两个地点之间的“路程”要大于它们之间的“距离”,只有当两个地点之间的路线为直线时,路程和距离才相等。
10、最大的分数单位是1/2还是1/1?
先看看分数单位的含义:把单位“1”平均分成若干份,表示这样一份的数。
显然,在分数意义中,关键是“分”,没有“分”,就没有“份”。因为把单位“1”平均分成的最少份数是2份(如果是1份,也就无所谓“分”),由此得到的分数单位是1/2,所以1/2是最大的分数单位。
尽管就广义的分数来说,1/1也可视作分数,但它已不是我们通常意义上 认识的与整数对立的那种分数(在平均分的基础上所产生),故此,最大的分数单位应以1/2为宜。
11、像 0/3、0.2/3、3/0.2这样的数是不是分数?
分数的定义明确告诉我们:把单位“1”平均分成若干份,表示这样一份或几份的数,叫分数。其中,分成的份数叫做分数的分母,要表示的份数叫做分子。由此可知,分数的分子和分母都应该是非零自然数。从这个意义来说,以上这几个数徒具分数的形式,而不具分数的实质,因此都不应该视为分数。
进而,在考查学生对“分数”涵义的理解时,应着眼于通常意义上的分数,将上述这些变异形式纳入思考的范围,其本身对训练学生的思维并无多大实际意义,而且会令诸如“分数都大于0”等命题的真与假陷入尴尬。
12、比6多1/2的数”应该是“6+1/2”还是“6+(1+1/2)”?
要弄清这个问题,先得弄清“6”的性质。显然,此处的“6”其实质是一个“数”,而非一个“量”,求“比6多1/2的数”应属于“求比一个数多几的数”的范畴,问题中的“多几”都是确定的具体数,这里的“几”既可以是整数,也可以是小数或分数。所以,这里的“1/2”是指在6的基础上“多1/2”这个“1/2”数的本身,而非“6的1/2”。所以,“比6多1/2的数”应该是“6+1/2”。
当然,如果题目确定为“比6多它的1/2的数”,那答案则属于后者。
13、计算出勤率可不可以不乘100%?
同一课程标准下,不同的教材给出了不同的理解,这给执教者带来了困惑:到底可不可以不乘100%呢?笔者以为,求“××率”其结果必定为百分率。以出勤率为例,就是求实际出勤人数占应出勤人数的百分之几。如果公式只写成:出勤率=实际出勤人数/应出勤人数,我们说这只是分数形式(也即是求实际出勤人数占应出勤人数的“几分之几”),并不是百分数。因此,在公式后面乘上“100%”,既可以使计算数值大小不变,又能保证结果形式满足百分数的要求。因此,计算出勤率、发芽率、出粉率、合格率……的公式中,都应乘“100%”。同时建议各版本教材的编委统一思想,以免给一线教师造成认识上的混乱。
14、小于90度的角都是锐角吗?
根据课标教材定义:小于90度的角叫做锐角。答案似乎是肯定的,但由此又产生一个新的问题:0度的角是什么角,也是锐角吗?
事实是,锐角定义有一个隐含的前提,就是小学数学中所讨论的角都是正角。习惯上,我们把射线按逆时针方向旋转而得到的角叫做正角,射线按顺时针方向旋转而得到的角叫做负角,当一条射线没有做任何旋转时,就把它看成零角。如果将角的概念推广到任意大小的角,就应分为正角、负角、和零角。
由此,严格意义上的锐角定义应是:大于0度而小于90度的角叫做锐角。(建议教材作出修改)
15、足球比赛记分牌上的“3︰2”是数学中的“比”吗?
我们至少可以从两个方面来理解它们的差别。
第一, 球类比赛中的“3︰2”表示的是比赛双方的得分情况,是“差”比,即表示相差关系,一方得3分,另一方得2分,双方相差1分;数学中的“3︰2”表示的是“3÷2”,是“倍”比,商为1.5。有鉴于此,球类比赛中的“比”(其实是比分),其后数可以为0的,而数学中的“比”,其后数(相当于除数)是不可以为0的。
第二,数学中的“比”是可以化简的,如“4︰2=2︰1”;同样的“4︰2”放在球类比赛中,却不可以化简,如果化简就不能反映双方在比赛中的实际得分了。
16、思考与建议
通过以上问题的分析,老师们在实施新课程的过程中,的确可能遇到许多知识性“诘问”。因此,如何尽最大努力减少“诘问”数量,以保证数学教学的科学性就值得我们思考。
16.1修改完善新教材与教师教学用书
教材与教师用书是广大教师实施新课程所依据的主要文本资源,也是实现课改总体目标的重要保证。于此,被教师们视为“圣经”的教材与教师用书本身应该是高质量的。然而,正如前述第5、第14、第15三问论及的一样,教材本身存有瑕疵,应在细节上进一步加以推敲。
其次,建议各册教师教学用书对本册内容的知识性疑难及背景资料进行相应的收集、整理,并单列板块形成资料库,增强教师用书的指导功能。
16.2加强知识理解,提高教师学科素养
“有效的教学依赖于教师对所教内容的深层含义是否有坚实的理解,良好的教材、软件、教师用书都不能代替高资质的教师。”数学教学的“四基”是否扎实,一个关键的因素便是“教师对数学知识的深刻理解”,文前论及的许多“诘问”其实都和这一点有关。如何加强在职教师对学科知识的理解,进而提升学科素养,既要有政策层面的宏观考量,又要有教师个体的微观反思。