import tensorflow as tf
import matplotlib.pyplot as plt
import numpy as np
import os
os.environ['TF_CPP_MIN_LOG_LEVEL']='2'
def add_layer(inputs,in_size,out_size,activation_function=None):
Weights=tf.Variable(tf.random_normal([in_size,out_size]))
biases=tf.Variable(tf.zeros([1,out_size])+0.1)
Wx_plus_b=tf.matmul(inputs,Weights)+biases
if activation_function is None:
outputs=Wx_plus_b
else:
outputs=activation_function(Wx_plus_b)
return outputs
x_data=np.linspace(-1,1,300,dtype=np.float32)[:,np.newaxis]
noise=np.random.normal(0,0.05,x_data.shape).astype(np.float32)
y_data=np.square(x_data)-0.5+noise
fig=plt.figure()
ax=fig.add_subplot(1,1,1)
ax.scatter(x_data,y_data)
plt.ion()
plt.show()
xs=tf.placeholder(tf.float32,[None,1])
ys=tf.placeholder(tf.float32,[None,1])
l1=add_layer(xs,1,10,activation_function=tf.nn.relu)
prediction=add_layer(l1,10,1,activation_function=None)
loss=tf.reduce_mean(tf.reduce_sum(tf.square(ys-prediction),reduction_indices=[1]))
train_step=tf.train.GradientDescentOptimizer(0.1).minimize(loss)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
for i in range(2000):
sess.run(train_step,feed_dict={xs:x_data,ys:y_data})
if i%50==0:
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value=sess.run(prediction,feed_dict={xs:x_data})
lines=ax.plot(x_data,prediction_value,'r-',lw=5)
plt.pause(0.1)
线性回归
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- 大家早安、午安、晚安,一起来学习机器学习算法中回归部分的方法啦,每次都是满满的干货,大家看的时候多喝水哈,正文开始...
- 文章结构 回归分析是通过建立统计模型研究变量间相关关系的密切程度、结构状态、模型预测的一种有效工具。 一元线性回归...
- 多元线性回归模型中,如果所有特征一起上,容易造成过拟合使测试数据误差方差过大;因此减少不必要的特征,简化模型是减小...
- 1 摘要 本报告是在学习斯坦福大学机器学习课程前四节加上配套的讲义后的总结与认识。前四节主要讲述了回归问题,回归属...