[动手学深度学习-PyTorch版]-3.5深度学习基础-图像分类数据集(Fashion-MINIST)

3.5 图像分类数据集(Fashion-MNIST)

在介绍softmax回归的实现前我们先引入一个多类图像分类数据集。它将在后面的章节中被多次使用,以方便我们观察比较算法之间在模型精度和计算效率上的区别。图像分类数据集中最常用的是手写数字识别数据集MNIST[1]。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST[2](这个数据集也比较小,只有几十M,没有GPU的电脑也能吃得消)。

本节我们将使用torchvision包,它是服务于PyTorch深度学习框架的,主要用来构建计算机视觉模型。torchvision主要由以下几部分构成:

  1. torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
  2. torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
  3. torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
  4. torchvision.utils: 其他的一些有用的方法。

3.5.1 获取数据集

首先导入本节需要的包或模块。

import torch
import torchvision
import torchvision.transforms as transforms
import matplotlib.pyplot as plt
import time
import sys
sys.path.append("..") # 为了导入上层目录的d2lzh_pytorch
import d2lzh_pytorch as d2l

下面,我们通过torchvision的torchvision.datasets来下载这个数据集。第一次调用时会自动从网上获取数据。我们通过参数train来指定获取训练数据集或测试数据集(testing data set)。测试数据集也叫测试集(testing set),只用来评价模型的表现,并不用来训练模型。

另外我们还指定了参数transform = transforms.ToTensor()使所有数据转换为Tensor,如果不进行转换则返回的是PIL图片。transforms.ToTensor()将尺寸为 (H x W x C) 且数据位于[0, 255]的PIL图片或者数据类型为np.uint8的NumPy数组转换为尺寸为(C x H x W)且数据类型为torch.float32且位于[0.0, 1.0]的Tensor

注意: 由于像素值为0到255的整数,所以刚好是uint8所能表示的范围,包括transforms.ToTensor()在内的一些关于图片的函数就默认输入的是uint8型,若不是,可能不会报错但可能得不到想要的结果。所以,如果用像素值(0-255整数)表示图片数据,那么一律将其类型设置成uint8,避免不必要的bug。 本人就被这点坑过,详见我的这个博客2.2.4节

mnist_train = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='~/Datasets/FashionMNIST', train=False, download=True, transform=transforms.ToTensor())

上面的mnist_trainmnist_test都是torch.utils.data.Dataset的子类,所以我们可以用len()来获取该数据集的大小,还可以用下标来获取具体的一个样本。训练集中和测试集中的每个类别的图像数分别为6,000和1,000。因为有10个类别,所以训练集和测试集的样本数分别为60,000和10,000。

print(type(mnist_train))
print(len(mnist_train), len(mnist_test))

输出:

<class 'torchvision.datasets.mnist.FashionMNIST'>
60000 10000

我们可以通过下标来访问任意一个样本:

feature, label = mnist_train[0]
print(feature.shape, label)  # Channel x Height x Width

输出:

torch.Size([1, 28, 28]) tensor(9)

变量feature对应高和宽均为28像素的图像。由于我们使用了transforms.ToTensor(),所以每个像素的数值为[0.0, 1.0]的32位浮点数。需要注意的是,feature的尺寸是 (C x H x W) 的,而不是 (H x W x C)。第一维是通道数,因为数据集中是灰度图像,所以通道数为1。后面两维分别是图像的高和宽。

Fashion-MNIST中一共包括了10个类别,分别为t-shirt(T恤)、trouser(裤子)、pullover(套衫)、dress(连衣裙)、coat(外套)、sandal(凉鞋)、shirt(衬衫)、sneaker(运动鞋)、bag(包)和ankle boot(短靴)。以下函数可以将数值标签转成相应的文本标签。

# 本函数已保存在d2lzh包中方便以后使用
def get_fashion_mnist_labels(labels):
    text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat',
                   'sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']
    return [text_labels[int(i)] for i in labels]

下面定义一个可以在一行里画出多张图像和对应标签的函数。

# 本函数已保存在d2lzh包中方便以后使用
def show_fashion_mnist(images, labels):
    d2l.use_svg_display()
    # 这里的_表示我们忽略(不使用)的变量
    _, figs = plt.subplots(1, len(images), figsize=(12, 12))
    for f, img, lbl in zip(figs, images, labels):
        f.imshow(img.view((28, 28)).numpy())
        f.set_title(lbl)
        f.axes.get_xaxis().set_visible(False)
        f.axes.get_yaxis().set_visible(False)
    plt.show()

现在,我们看一下训练数据集中前10个样本的图像内容和文本标签。

X, y = [], []
for i in range(10):
    X.append(mnist_train[i][0])
    y.append(mnist_train[i][1])
show_fashion_mnist(X, get_fashion_mnist_labels(y))
image

3.5.2 读取小批量

我们将在训练数据集上训练模型,并将训练好的模型在测试数据集上评价模型的表现。前面说过,mnist_traintorch.utils.data.Dataset的子类,所以我们可以将其传入torch.utils.data.DataLoader来创建一个读取小批量数据样本的DataLoader实例。

在实践中,数据读取经常是训练的性能瓶颈,特别当模型较简单或者计算硬件性能较高时。PyTorch的DataLoader中一个很方便的功能是允许使用多进程来加速数据读取。这里我们通过参数num_workers来设置4个进程读取数据。

batch_size = 256
if sys.platform.startswith('win'):
    num_workers = 0  # 0表示不用额外的进程来加速读取数据
else:
    num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)

我们将获取并读取Fashion-MNIST数据集的逻辑封装在d2lzh_pytorch.load_data_fashion_mnist函数中供后面章节调用。该函数将返回train_itertest_iter两个变量。随着本书内容的不断深入,我们会进一步改进该函数。它的完整实现将在5.6节中描述。

最后我们查看读取一遍训练数据需要的时间。

start = time.time()
for X, y in train_iter:
    continue
print('%.2f sec' % (time.time() - start))

输出:

1.57 sec

小结

image.png

参考文献

[1] LeCun, Y., Cortes, C., & Burges, C. http://yann.lecun.com/exdb/mnist/

[2] Xiao, H., Rasul, K., & Vollgraf, R. (2017). Fashion-mnist: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747.


注:本节除了代码之外与原书基本相同,原书传送门

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容