1.block的实质是什么?一共有几种block?都是什么情况下生成的?
block:本质就是一个object-c对象.
block:存储位置,可能分为3个地方:全局区,堆区、栈区(ARC情况下会自动拷贝到堆区,因此ARC下只能有两个地方:全局区、堆区)
全局区:不访问栈区的变量(如局部变量),且不访问堆区的变量(alloc创建的对象),此时block存放在代码去。
堆区:访问了处于栈区的变量,或者堆区的变量,此时block存放在堆区。–需要注意实际是放在栈区,在ARC情况下会自动拷贝到堆区,如果不是ARC则存放在栈区,所在函数执行完毕就回释放,想再外面调用需要用copy指向它,这样就拷贝到了堆区,strong属性不会拷贝、会造成野指针错区。
2.为什么在默认情况下无法修改被block捕获的变量? __block都做了什么?
默认情况下,block里面的变量,拷贝进去的是变量的值,而不是指向变量的内存的指针。
当使用__block
修饰后的变量,拷贝到block
里面的就是指向变量的指针,所以我们就可以修改变量的值。
3.模拟一下循环引用的一个情况?block实现界面反向传值如何实现?
Person *p = [[Person alloc]init];
[p setPersonBlock:^(NSString *str) {
p.name = str;
}];
Runtime
1.objc在向一个对象发送消息时,发生了什么?
根据对象的
isa
指针找到类对象id
,在查询类对象里面的methodLists
方法函数列表,如果没有在好到,在沿着superClass
,寻找父类,再在父类methodLists
方法列表里面查询,最终找到SEL
,根据id
和SEL
确认IMP
(指针函数),在发送消息;
3.什么时候会报unrecognized selector错误?iOS有哪些机制来避免走到这一步?
当发送消息的时候,我们会根据类里面的
methodLists
列表去查询我们要动用的SEL
,当查询不到的时候,我们会一直沿着父类查询,当最终查询不到的时候我们会报unrecognized selector错误
当系统查询不到方法的时候,会调用+(BOOL)resolveInstanceMethod:(SEL)sel
动态解释的方法来给我一次机会来添加,调用不到的方法。或者我们可以再次使用-(id)forwardingTargetForSelector:(SEL)aSelector
重定向的方法来告诉系统,该调用什么方法,一来保证不会崩溃。
4.能否向编译后得到的类中增加实例变量?能否向运行时创建的类中添加实例变量?为什么?
1.不能向编译后得到的类增加实例变量
2.能向运行时创建的类中添加实例变量
解释:
1.编译后的类已经注册在runtime中,类结构体中的objc_ivar_list实例变量的链表和instance_size实例变量的内存大小已经确定,runtime会调用class_setvarlayout或class_setWeaklvarLayout来处理strong weak引用.所以不能向存在的类中添加实例变量
2.运行时创建的类是可以添加实例变量,调用class_addIvar函数.但是的在调用objc_allocateClassPair之后,objc_registerClassPair之前,原因同上.
5.runtime如何实现weak变量的自动置nil?
runtime 对注册的类, 会进行布局,对于 weak 对象会放入一个 hash 表中。 用 weak 指向的对象内存地址作为 key,当此对象的引用计数为0的时候会 dealloc,假如 weak 指向的对象内存地址是a,那么就会以a为键, 在这个 weak 表中搜索,找到所有以a为键的 weak 对象,从而设置为 nil。
6.给类添加一个属性后,在类结构体里哪些元素会发生变化?
instance_size :实例的内存大小
objc_ivar_list *ivars:属性列表
RunLoop
1.runloop是来做什么的?runloop和线程有什么关系?主线程默认开启了runloop么?子线程呢?
runloop:字面意思就是跑圈,其实也就是一个循环跑圈,用来处理线程里面的事件和消息。
runloop和线程的关系:每个线程如果想继续运行,不被释放,就必须有一个runloop来不停的跑圈,以来处理线程里面的各个事件和消息。
主线程默认是开启一个runloop。也就是这个runloop才能保证我们程序正常的运行。子线程是默认没有开始runloop的
2.runloop的mode是用来做什么的?有几种mode?
model:是runloop里面的模式,不同的模式下的runloop处理的事件和消息有一定的差别。
系统默认注册了5个Mode:
(1)kCFRunLoopDefaultMode: App的默认 Mode,通常主线程是在这个 Mode 下运行的。
(2)UITrackingRunLoopMode: 界面跟踪 Mode,用于 ScrollView 追踪触摸滑动,保证界面滑动时不受其他 Mode 影响。
(3)UIInitializationRunLoopMode: 在刚启动 App 时第进入的第一个 Mode,启动完成后就不再使用。
(4)GSEventReceiveRunLoopMode: 接受系统事件的内部 Mode,通常用不到。
(5)kCFRunLoopCommonModes: 这是一个占位的 Mode,没有实际作用。
注意iOS 对以上5中model进行了封装
NSDefaultRunLoopMode;
NSRunLoopCommonModes
3.为什么把NSTimer对象以NSDefaultRunLoopMode(kCFRunLoopDefaultMode)添加到主运行循环以后,滑动scrollview的时候NSTimer却不动了?
nstime对象是在
NSDefaultRunLoopMode
下面调用消息的,但是当我们滑动scrollview的时候,NSDefaultRunLoopMode
模式就自动切换到UITrackingRunLoopMode
模式下面,却不可以继续响应nstime发送的消息。所以如果想在滑动scrollview的情况下面还调用nstime的消息,我们可以把nsrunloop的模式更改为NSRunLoopCommonModes
4.苹果是如何实现Autorelease Pool的?
Autorelease Pool作用:缓存池,可以避免我们经常写relase的一种方式。其实就是延迟release,将创建的对象,添加到最近的autoreleasePool中,等到autoreleasePool作用域结束的时候,会将里面所有的对象的引用计数器-1.
autorelease
类结构
1.isa指针?(对象的isa,类对象的isa,元类的isa都要说)
在oc中,类也是对象,所属元类。所以经常说:
万物皆对象
对象的isa指针指向所属的类
类的isa指针指向了所属的元类
元类的isa指向了根元类,根元类指向了自己。
[图片上传失败...(image-b10fe8-1615972432632)]
2.类方法和实例方法有什么区别?
调用的方式不同,类方法必须使用类调用,在方法里面不能调用属性,类方法里面也必须调用类方法。存储在元类结构体里面的
methodLists
里面
实例方法必须使用实例对象调用,可以在实例方法里面使用属性,实例方法也必须调用实例方法。存储在类结构体里面的methodLists
里面
3.介绍一下分类,能用分类做什么?内部是如何实现的?它为什么会覆盖掉原来的方法?
category:我们可以给类或者系统类添加实例方法方法。我们添加的实例方法,会被动态的添加到类结构里面的
methodList
列表里面。categort
4.运行时能增加成员变量么?能增加属性么?如果能,如何增加?如果不能,为什么?
可以添加属性的,但必须我们实现它的
getter
和setter
方法。但是没有添加带下滑线同名的成员变量
但是我们使用runtime
我们就可以实现添加成员变量方法如下
- (void)setName:(NSString *)name {
/**
* 为某个类关联某个对象
*
* @param object#> 要关联的对象 description#>
* @param key#> 要关联的属性key description#>
* @param value#> 你要关联的属性 description#>
* @param policy#> 添加的成员变量的修饰符 description#>
*/
objc_setAssociatedObject(self, @selector(name), name, OBJC_ASSOCIATION_COPY_NONATOMIC);
}
- (NSString *)name {
/**
* 获取到某个类的某个关联对象
*
* @param object#> 关联的对象 description#>
* @param key#> 属性的key值 description#>
*/
return objc_getAssociatedObject(self, @selector(name));
}
5.objc中向一个nil对象发送消息将会发生什么?(返回值是对象,是标量,结构体)
• 如果一个方法返回值是一个对象,那么发送给nil的消息将返回0(nil)。例如:Person * motherInlaw = [ aPerson spouse] mother]; 如果spouse对象为nil,那么发送给nil的消息mother也将返回nil。
• 如果方法返回值为指针类型,其指针大小为小于或者等于sizeof(void*),float,double,long double 或者long long的整型标量,发送给nil的消息将返回0。
• 如果方法返回值为结构体,正如在《Mac OS X ABI 函数调用指南》,发送给nil的消息将返回0。结构体中各个字段的值将都是0。其他的结构体数据类型将不是用0填充的。
• 如果方法的返回值不是上述提到的几种情况,那么发送给nil的消息的返回值将是未定义的。
1.进程与线程
• 进程:1.进程是一个具有一定独立功能的程序关于某次数据集合的一次运行活动,它是操作系统分配资源的基本单元.2.进程是指在系统中正在运行的一个应用程序,就是一段程序的执行过程,我们可以理解为手机上的一个app.3.每个进程之间是独立的,每个进程均运行在其专用且受保护的内存空间内,拥有独立运行所需的全部资源
• 线程1.程序执行流的最小单元,线程是进程中的一个实体.2.一个进程要想执行任务,必须至少有一条线程.应用程序启动的时候,系统会默认开启一条线程,也就是主线程
• 进程和线程的关系1.线程是进程的执行单元,进程的所有任务都在线程中执行2.线程是 CPU 分配资源和调度的最小单位3.一个程序可以对应多个进程(多进程),一个进程中可有多个线程,但至少要有一条线程4.同一个进程内的线程共享进程资源
2.什么是多线程?
• 多线程的实现原理:事实上,同一时间内单核的CPU只能执行一个线程,多线程是CPU快速的在多个线程之间进行切换(调度),造成了多个线程同时执行的假象。
• 如果是多核CPU就真的可以同时处理多个线程了。
• 多线程的目的是为了同步完成多项任务,通过提高系统的资源利用率来提高系统的效率。
3.多线程的优点和缺点
• 优点:能适当提高程序的执行效率能适当提高资源利用率(CPU、内存利用率)
• 缺点:开启线程需要占用一定的内存空间(默认情况下,主线程占用1M,子线程占用512KB),如果开启大量的线程,会占用大量的内存空间,降低程序的性能线程越多,CPU在调度线程上的开销就越大程序设计更加复杂:比如线程之间的通信、多线程的数据共享
4.多线程的 并行 和 并发 有什么区别?
• 并行:充分利用计算机的多核,在多个线程上同步进行
• 并发:在一条线程上通过快速切换,让人感觉在同步进行
5.iOS中实现多线程的几种方案,各自有什么特点?
• NSThread 面向对象的,需要程序员手动创建线程,但不需要手动销毁。子线程间通信很难。
• GCD c语言,充分利用了设备的多核,自动管理线程生命周期。比NSOperation效率更高。
• NSOperation 基于gcd封装,更加面向对象,比gcd多了一些功能。
6.多个网络请求完成后执行下一步
• 使用GCD的dispatch_group_t创建一个dispatch_group_t每次网络请求前先dispatch_group_enter,请求回调后再dispatch_group_leave,enter和leave必须配合使用,有几次enter就要有几次leave,否则group会一直存在。当所有enter的block都leave后,会执行dispatch_group_notify的block。
NSString *str = @"http://xxxx.com/";
NSURL *url = [NSURL URLWithString:str];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
NSURLSession *session = [NSURLSession sharedSession];
dispatch_group_t downloadGroup = dispatch_group_create();
for (int i=0; i<10; i++) {
dispatch_group_enter(downloadGroup);
NSURLSessionDataTask *task = [session dataTaskWithRequest:request completionHandler:^(NSData * _Nullable data, NSURLResponse * _Nullable response, NSError * _Nullable error) {
NSLog(@"%d---%d",i,i);
dispatch_group_leave(downloadGroup);
}];
[task resume];
}
dispatch_group_notify(downloadGroup, dispatch_get_main_queue(), ^{
NSLog(@"end");
});
•
• 使用GCD的信号量dispatch_semaphore_tdispatch_semaphore信号量为基于计数器的一种多线程同步机制。如果semaphore计数大于等于1,计数-1,返回,程序继续运行。如果计数为0,则等待。dispatch_semaphore_signal(semaphore)为计数+1操作,dispatch_semaphore_wait(sema, DISPATCH_TIME_FOREVER)为设置等待时间,这里设置的等待时间是一直等待。创建semaphore为0,等待,等10个网络请求都完成了,dispatch_semaphore_signal(semaphore)为计数+1,然后计数-1返回
NSString *str = @"http://xxxx.com/";
NSURL *url = [NSURL URLWithString:str];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
NSURLSession *session = [NSURLSession sharedSession];
dispatch_semaphore_t sem = dispatch_semaphore_create(0);
for (int i=0; i<10; i++) {
NSURLSessionDataTask *task = [session dataTaskWithRequest:request completionHandler:^(NSData * _Nullable data, NSURLResponse * _Nullable response, NSError * _Nullable error) {
NSLog(@"%d---%d",i,i);
count++;
if (count==10) {
dispatch_semaphore_signal(sem);
count = 0;
}
}];
[task resume];
}
dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
dispatch_async(dispatch_get_main_queue(), ^{
NSLog(@"end");
});
7.多个网络请求顺序执行后执行下一步
• 使用信号量semaphore每一次遍历,都让其dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER),这个时候线程会等待,阻塞当前线程,直到dispatch_semaphore_signal(sem)调用之后
NSString *str = @"http://www.jianshu.com/p/6930f335adba";
NSURL *url = [NSURL URLWithString:str];
NSURLRequest *request = [NSURLRequest requestWithURL:url];
NSURLSession *session = [NSURLSession sharedSession];
dispatch_semaphore_t sem = dispatch_semaphore_create(0);
for (int i=0; i<10; i++) {
NSURLSessionDataTask *task = [session dataTaskWithRequest:request completionHandler:^(NSData * _Nullable data, NSURLResponse * _Nullable response, NSError * _Nullable error) {
NSLog(@"%d---%d",i,i);
dispatch_semaphore_signal(sem);
}];
[task resume];
dispatch_semaphore_wait(sem, DISPATCH_TIME_FOREVER);
}
dispatch_async(dispatch_get_main_queue(), ^{
NSLog(@"end");
});
8.异步操作两组数据时, 执行完第一组之后, 才能执行第二组
• 这里使用dispatch_barrier_async栅栏方法即可实现
dispatch_queue_t queue = dispatch_queue_create("test", DISPATCH_QUEUE_CONCURRENT);
dispatch_async(queue, ^{
NSLog(@"第一次任务的主线程为: %@", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"第二次任务的主线程为: %@", [NSThread currentThread]);
});
dispatch_barrier_async(queue, ^{
NSLog(@"第一次任务, 第二次任务执行完毕, 继续执行");
});
dispatch_async(queue, ^{
NSLog(@"第三次任务的主线程为: %@", [NSThread currentThread]);
});
dispatch_async(queue, ^{
NSLog(@"第四次任务的主线程为: %@", [NSThread currentThread]);
});
9.多线程中的死锁?
死锁是由于多个线程(进程)在执行过程中,因为争夺资源而造成的互相等待现象,你可以理解为卡主了。产生死锁的必要条件有四个:
• 互斥条件 : 指进程对所分配到的资源进行排它性使用,即在一段时间内某资源只由一个进程占用。如果此时还有其它进程请求资源,则请求者只能等待,直至占有资源的进程用毕释放。
• 请求和保持条件 : 指进程已经保持至少一个资源,但又提出了新的资源请求,而该资源已被其它进程占有,此时请求进程阻塞,但又对自己已获得的其它资源保持不放。
• 不可剥夺条件 : 指进程已获得的资源,在未使用完之前,不能被剥夺,只能在使用完时由自己释放。
• 环路等待条件 : 指在发生死锁时,必然存在一个进程——资源的环形链,即进程集合{P0,P1,P2,···,Pn}中的P0正在等待一个P1占用的资源;P1正在等待P2占用的资源,……,Pn正在等待已被P0占用的资源。最常见的就是 同步函数 + 主队列 的组合,本质是队列阻塞。
dispatch_sync(dispatch_get_main_queue(), ^{
NSLog(@"2");
});
NSLog(@"1");
// 什么也不会打印,直接报错
10.GCD执行原理?
• GCD有一个底层线程池,这个池中存放的是一个个的线程。之所以称为“池”,很容易理解出这个“池”中的线程是可以重用的,当一段时间后这个线程没有被调用胡话,这个线程就会被销毁。注意:开多少条线程是由底层线程池决定的(线程建议控制再3~5条),池是系统自动来维护,不需要我们程序员来维护(看到这句话是不是很开心?) 而我们程序员需要关心的是什么呢?我们只关心的是向队列中添加任务,队列调度即可。
• 如果队列中存放的是同步任务,则任务出队后,底层线程池中会提供一条线程供这个任务执行,任务执行完毕后这条线程再回到线程池。这样队列中的任务反复调度,因为是同步的,所以当我们用currentThread打印的时候,就是同一条线程。
• 如果队列中存放的是异步的任务,(注意异步可以开线程),当任务出队后,底层线程池会提供一个线程供任务执行,因为是异步执行,队列中的任务不需等待当前任务执行完毕就可以调度下一个任务,这时底层线程池中会再次提供一个线程供第二个任务执行,执行完毕后再回到底层线程池中。
• 这样就对线程完成一个复用,而不需要每一个任务执行都开启新的线程,也就从而节约的系统的开销,提高了效率。在iOS7.0的时候,使用GCD系统通常只能开58条线程,iOS8.0以后,系统可以开启很多条线程,但是实在开发应用中,建议开启线程条数:35条最为合理。