奇异值分解及其matlab函数svds

参考自:MATLAB中的svd与svds(转)_haoliyan123_新浪博客

设A为m*n阶矩阵,A'表示A的转置矩阵,A'*A的n个特征值的非负平方根叫作A的奇异值。记为σi(A)。

这几天做实验涉及到奇异值分解svd(singular value decomposition),涉及到这样的一个问题,

做PCA时候400幅图像拉成向量按列摆放,结果摆成了比如说10000*400大小的矩阵,

用到svd函数进行奇异值分解找主分量,结果MATLAB提示超出内存,后来想起还有个函数叫svds,看到别人用过,以为只是一个变体,没什么区别,就用上了,结果确实在预料之中。但是今天觉得不放心,跑到变量里面看了下,发现这个大的矩阵被分解成了

三个10000*6,6*6,400*6大小的矩阵的乘积,而不是普通的svd分解得到的10000*10000,10000*400,400*400大小的矩阵乘积,把我吓了一跳,都得到预期的结果,难不成这里还出个篓子?赶紧试验,

发现任给一个M*N大小的矩阵,都是被分解成了M*6,6*6,N*6大小的矩阵的乘积,为什么都会出现6呢?确实很纳闷。help svds看了一下,发现svds(A) 返回的就是最大的6个特征值及其对应的特征行向量和特征列向量,

还好,我们实验中是在svds得到列向量中再取前5个最大的列向量,这个与普通的svd得到的结果是一致的,虚惊一场。。。还得到了一些别的,比如

改变这个默认的设置,

比如用[u,d,v]=svds(A,10)将得到最大10个特征值及其对应的最大特征行向量和特征列向量,

[u,d,v]=svds(A,10,0)将得到最小10个特征值及其对应的特征行向量和特征列向量,

[u,d,v]=svds(A,10,2)将得到与2最接近10个特征值及其对应的特征行向量和特征列向量。

总之,相比svd,svds的可定制性更强。

奇异值分解非常有用,所谓奇异值分解,即对于矩阵A(m*n),存在U(m*m),V(n*n),S(m*n),满足A = U*S*V’。也就是说,可将矩阵A分解为矩阵U,V,S的乘积。

U和V中分别是A的奇异向量,而S是A的奇异值。

AA'的正交单位特征向量组成U,特征值组成S'S,

A'A的正交单位特征向量组成V,特征值(与AA'相同)组成SS'。因此,奇异值分解和特征值问题紧密联系

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容

  • 一前言 特征值 奇异值 二奇异值计算 三PCA 1)数据的向量表示及降维问题 2)向量的表示及基变换 3)基向量 ...
    Arya鑫阅读 10,489评论 2 43
  • 原文在此,仅仅将原文的Matlab代码改为Python3版本。 特征值与特征向量的几何意义 矩阵的乘法是什么,别只...
    粗识名姓阅读 14,760评论 0 24
  • 一.判别分析降维 LDA降维和PCA的不同是LDA是有监督的降维,其原理是将特征映射到低维上,原始数据的类别也...
    wlj1107阅读 11,884评论 0 4
  • 在虎三的老家,饭店打包剩菜叫做“折菜”。一盘剩菜,甚至几盘剩菜折叠在一个袋子里,顾名思义:“折菜”。时尚点叫做:“...
    耿卮言阅读 2,321评论 4 26
  • 你有压力吗?你觉得压力大吗?在这个生活节奏越来越快的世界里,压力已经成了全球性的流行疾病。这种疾病正蔓延到...
    章安阅读 317评论 0 0