表示学习、迁移学习、多任务学习

迁移学习

提出背景在机器学习、深度学习和数据挖掘的大多数任务中,会假设training和inference时,采用的数据服从相同的分布(distribution)、来源于相同的特征空间(feature space)。但在现实应用中,这个假设很难成立,往往遇到一些问题:

1、带标记的训练样本数量有限。比如,处理A领域(target domain)的分类问题时,缺少足够的训练样本。同时,与A领域相关的B(source domain)领域,拥有大量的训练样本,但B领域与A领域处于不同的特征空间或样本服从不同的分布。

2、数据分布会发生变化。数据分布与时间、地点或其他动态因素相关,随着动态因素的变化,数据分布会发生变化,以前收集的数据已经过时,需要重新收集数据,重建模型。


发展历史迁移学习的研究来源于一个观测:人类可以将以前的学到的知识应用于解决新的问题,更快的解决问题或取得更好的效果。迁移学习被赋予这样一个任务:从以前的任务当中去学习知识(knowledge)或经验,并应用于新的任务当中。换句话说,迁移学习目的是从一个或多个源任务(source tasks)中抽取知识、经验,然后应用于一个目标领域(target domain)当中去。

自1995年以来,迁移学习吸引了众多的研究者的目光,迁移学习有很多其他名字:学习去学习(Learning to learn)、终身学习(life-long learning)、推导迁移(inductive transfer)、知识强化(knowledge consolidation)、上下文敏感性学习(context-sensitive learning)、基于知识的推导偏差(knowledge-based inductive bias)、累计/增量学习(increment / cumulative learning)等。


【符号定义

领域(domain)

领域由两个部分组成:特征空间(feature space)X特征空间的边缘分布P(x),其中,x={x1,x2......xn} 属于X。如果两个领域不同,它们的特征空间或边缘概率分布不同。领域表示成D={X,P(x)}。

任务(task)

任务组成:给定一个领域D={X,P(x)}的情况下,一个任务也包含两个部分:标签空间Y和一个目标预测函数f(.)。一个任务表示为:T={Y,f(.)}。目标预测函数不能被直接观测,但可以通过训练样本学习得到。从概率论角度来看,目标预测函数f(.)可以表示为P(Y|X)。任务表示成T={Y,P(Y|X)}。

一般情况下,只考虑只存在一个source domain Ds 和一个target domain Dt的情况。其中,源领域Ds = {(xs1,ys1),(xs2,ys2)......(xsns,ysns)},xsi 属于Xs,表示源领域的观测样本,ysi属于Ys,表示源领域观测样本xsi对应的标签。目标领域Dt = {(xt1,yt1),(xt2,yt2).......(xtnt,ytnt)},xti属于Xt,表示目标领域观测样本,ysi属于Yt,表示目标领域xti对应的输出。通常情况下,源领域观测样本数目ns与目标领域观测样本数目nt存在如下关系:1<=  nt  <<  ns。

【分类】

【应用】


多任务学习

多任务学习是针对数据给出多个监督信息(标签)进行学习,例如识别一张图像中的脸是否是人脸、脸部表情、性别、年龄等,识别图像中车的颜色、车型、姿态等,都属于多任务分类。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容