2020-03-09

主题和队列有什么区别

    最初的消息队列,就是一个严格意义上的队列。在计算机领域,“队列(Queue)”是一种数据结构,有完整而严格的定义。在维基百科中,队列的定义是这样的:

    队列是先进先出(FIFO, First-In-First-Out)的线性表(Linear List)。在具体应用中通常用链表或者数组来实现。队列只允许在后端(称为 rear)进行插入操作,在前端(称为 front)进行删除操作。

    这个定义里面包含几个关键点:这个定义里面包含几个关键点,第一个是先进先出,这里面隐含着的一个要求是,在消息入队出队过程中,需要保证这些消息严格有序,按照什么顺序写进队列,必须按照同样的顺序从队列中读出来。不过,队列是没有“读”这个操作的,“读”就是出队,也就是从队列中“删除”这条消息。

    早期的消息队列,就是按照“队列”的数据结构来设计的。我们一起看下这个图,生产者(Producer)发消息就是入队操作,消费者(Consumer)收消息就是出队也就是删除操作,服务端存放消息的容器自然就称为“队列”。这就是最初的一种消息模型:队列模型。

    如果需要将一份消息数据分发给多个消费者,要求每个消费者都能收到全量的消息,例如,对于一份订单数据,风控系统、分析系统、支付系统等都需要接收消息。这个时候,单个队列就满足不了需求,一个可行的解决方式是,为每个消费者创建一个单独的队列,让生产者发送多份。显然这是个比较蠢的做法,同样的一份消息数据被复制到多个队列中会浪费资源,更重要的是,生产者必须知道有多少个消费者。为每个消费者单独发送一份消息,这实际上违背了消息队列“解耦”这个设计初衷。

    为了解决上述问题演化出了另外一种消息模型:“发布 - 订阅模型(Publish-Subscribe Pattern)”。

在消息领域的历史上很长的一段时间,队列模式和发布 - 订阅模式是并存的,有些消息队列同时支持这两种消息模型,比如 ActiveMQ。我们仔细对比一下这两种模型,生产者就是发布者,消费者就是订阅者,队列就是主题,并没有本质的区别。它们最大的区别其实就是,一份消息数据能不能被消费多次的问题。


    RabbitMQ 

RabbitMQ消息模型是基于队列模式的。通过Exchange 模块解决多个消费者问题。在 RabbitMQ 中,Exchange 位于生产者和队列之间,生产者并不关心将消息发送给哪个队列,而是将消息发送给 Exchange,由 Exchange 上配置的策略来决定将消息投递到哪些队列中。

同一份消息如果需要被多个消费者来消费,需要配置 Exchange 将消息发送到多个队列,每个队列中都存放一份完整的消息数据,可以为一个消费者提供消费服务。这也可以变相地实现新发布 - 订阅模型中,“一份消息数据可以被多个订阅者来多次消费”这样的功能。

RocketMQ 

    RocketMQ 使用的消息模型是标准的发布 - 订阅模型,在 RocketMQ 的术语表中,生产者、消费者和主题与我在上面讲的发布 - 订阅模型中的概念是完全一样的。在 RocketMQ 也有队列(Queue)这个概念,并且队列在 RocketMQ 中是一个非常重要的概念。

    那队列在 RocketMQ 中的作用是什么呢?这就要从消息队列的消费机制说起。几乎所有的消息队列产品都使用一种非常朴素的“请求 - 确认”机制,确保消息不会在传递过程中由于网络或服务器故障丢失。

    具体的做法也非常简单。在生产端,生产者先将消息发送给服务端,也就是 Broker,服务端在收到消息并将消息写入主题或者队列中后,会给生产者发送确认的响应。如果生产者没有收到服务端的确认或者收到失败的响应,则会重新发送消息;在消费端,消费者在收到消息并完成自己的消费业务逻辑(比如,将数据保存到数据库中)后,也会给服务端发送消费成功的确认,服务端只有收到消费确认后,才认为一条消息被成功消费,否则它会给消费者重新发送这条消息,直到收到对应的消费成功确认。

    这个确认机制很好地保证了消息传递过程中的可靠性,但是,引入这个机制在消费端带来了一个不小的问题。为了确保消息的有序性,在某一条消息被成功消费之前,下一条消息是不能被消费的,否则违背了有序性这个原则。

    也就是说,每个主题在任意时刻,至多只能有一个消费者实例在进行消费,那就没法通过水平扩展消费者的数量来提升消费端总体的消费性能。为了解决这个问题,RocketMQ 在主题下面增加了队列的概念。

    每个主题包含多个队列,通过多个队列来实现多实例并行生产和消费。需要注意的是,RocketMQ 只在队列上保证消息的有序性,主题层面是无法保证消息的严格顺序的

    RocketMQ 中,订阅者的概念是通过消费组(Consumer Group)来体现的。每个消费组都有消费主题中一份完整的消息,不同消费组之间消费进度彼此不受影响,也就是说,一条消息被 Consumer Group1 消费过,也会再给 Consumer Group2 消费。

    每个消费组中消费者是存在竞争关系的。如果消息被消费组其中一个消费者消费了,同组中其他消费者就不会收到该条消息了。

    在 Topic 的消费过程中,由于消息需要被不同的组进行多次消费,所以消费完的消息并不会立即被删除,这就需要 RocketMQ 为每个消费组在每个队列上维护一个消费位置(Consumer Offset),这个位置之前的消息都被消费过,之后的消息都没有被消费过,每成功消费一条消息,消费位置就加一。这个消费位置是非常重要的概念,我们在使用消息队列的时候,丢消息的原因大多是由于消费位置处理不当导致的。


Kafka

    Kafka 的消息模型和 RocketMQ 是完全一样的,我刚刚讲的所有 RocketMQ 中对应的概念,和生产消费过程中的确认机制,都完全适用于 Kafka。唯一的区别是,在 Kafka 中,队列这个概念的名称不一样,Kafka 中对应的名称是“分区(Partition)”,含义和功能是没有任何区别的。

总结:

     1.队列和主题的区别,这两个概念的背后实际上对应着两种不同的消息模型:队列模型和发布 - 订阅模型。两种消息模型其实并没有本质上的区别,都可以通过一些扩展或者变化来互相替代。

    2.常用的消息队列中,RabbitMQ 采用的是队列模型,但是它一样可以实现发布 - 订阅的功能。RocketMQ 和 Kafka 采用的是发布 - 订阅模型,并且二者的消息模型是基本一致的。

   3.上述所说的消息模型都是从逻辑层面考虑的,如RabbitMQ和kafka消息模型几乎一致,但他们底层实现可能就千差万别啦。

来源:(李玥-消息队列高手)学习总结

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,482评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,377评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,762评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,273评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,289评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,046评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,351评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,988评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,476评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,948评论 2 324
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,064评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,712评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,261评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,264评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,486评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,511评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,802评论 2 345

推荐阅读更多精彩内容