Given a binary tree, determine if it is a valid binary search tree (BST).Assume a BST is defined as follows:The left subtree of a node contains only nodes with keys less than the node's key.The right subtree of a node contains only nodes with keys greater than the node's key.Both the left and right subtrees must also be binary search trees.confused what "{1,#,2,3}" means? > read more on how binary tree is serialized on OJ.
Solution 1
Use stack to traverse through whole tree
Push all left children to stacks, compare left with root, then compare root with right children. BST should follow left < root && root < right. Then pop nodes from stacks so that we could reverse back to upper level. Repeat the comparison until all nodes are compared.
public class Solution {
/**
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
public boolean isValidBST(TreeNode root) {
TreeNode pre = null;
TreeNode cur = root;
if (root == null) return true;
Stack<TreeNode> nodes = new Stack<TreeNode>();
//deal with left first, compare with mid, store mid and deal right
while(true) {
//push all left nodes first, then push and deal right later
while(cur != null) {
nodes.push(cur);
cur = cur.left;
}
//pop out
if(nodes.isEmpty()) break;
//if lower level is finished, go up
if(cur == null) {
cur = nodes.pop();
}
//compare left with mid first, later mid with right, same logic
if(pre != null && pre.val >= cur.val) {
return false;
}
//finished left brach, compare root with right, go through right branch
pre = cur;
cur = cur.right;
}
return true;
}
}
Solution 2
Setting upper bound and lower bound to each node, pass restriction down to the whole tree. Test every node to see if they satisfy requirements
public class Solution {
/**
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
public boolean isValidBST(TreeNode root) {
return validHelper(root, Long.MIN_VALUE, Long.MAX_VALUE);
}
private boolean validHelper(TreeNode root, long min, long max) {
//null node, return true
if(root == null) return true;
//check root.val in the range of min and max
if(root.val <= min || root.val >= max) {
return false;
}
//pass down the restriction
return validHelper(root.left, min, root.val)
&& validHelper(root.right, root.val, max);
}
}
Solution 3
Use recursion to return min max value from left and right node, then compare with root value, need to define a new class representing isBST/min/max, similar to solution 2
Solution 4
Use recursion to do inorder traversal, create a global variable to store temp value
public class Solution {
/**
* @param root: The root of binary tree.
* @return: True if the binary tree is BST, or false
*/
TreeNode pre = null;
public boolean isValidBST(TreeNode root) {
return dfs(root);
}
private boolean dfs(TreeNode root) {
if(root == null) {
return true;
}
//check left node first
if(!dfs(root.left)) {
return false;
}
//check root.left with root, then next round root with root.right
if(pre != null && pre.val >= root.val) {
return false;
}
//store root to pre, so we can compare root with root.right
pre = root;
if(!dfs(root.right)) {
return false;
}
return true;
}
}
Mainly from Yu's Garden