所有内容基于阮一峰的ECMAScript 6 入门
1.二进制和八进制表示法
ES6提供了二进制和八进制数值的新的写法,分别用前缀0b(或0B)和0o(或0O)表示。
0b111110111 === 503 // true
0o767 === 503 // true
从 ES5 开始,在严格模式之中,八进制就不再允许使用前缀0表示,ES6 进一步明确,要使用前缀0o表示。
// 非严格模式
(function(){
console.log(0o11 === 011);
})() // true
// 严格模式
(function(){
'use strict';
console.log(0o11 === 011);
})() // Uncaught SyntaxError: Octal literals are not allowed in strict mode.
如果要将0b和0o前缀的字符串数值转为十进制,要使用Number方法。
Number('0b111') // 7
Number('0o10') // 8
2.Number.isFinite(),Number.isNaN()
ES6在Number对象上,新提供了Number.isFinite()和Number.isNaN()两个方法。
Number.isFinite()用来检查一个数值是否有限(finite)。
Number.isFinite(15); // true
Number.isFinite(0.8); // true
Number.isFinite(NaN); // false
Number.isFinite(Infinity); // false
Number.isFinite(-Infinity); // false
Number.isFinite('foo'); // false
Number.isFinite('15'); // false
Number.isFinite(true); // false
ES5可以通过下面的代码,部署Number.isFinite方法。
(function (global) {
var global_isFinite = global.isFinite;
Object.defineProperty(Number, 'isFinite', {
value: function isFinite(value) {
return typeof value === 'number' && global_isFinite(value);
},
configurable: true,
enumerable: false,
writable: true
});
})(this);
Number.isNaN()用来检查一个值是否为NaN。
Number.isNaN(NaN) // true
Number.isNaN(15) // false
Number.isNaN('15') // false
Number.isNaN(true) // false
Number.isNaN(9/NaN) // true
Number.isNaN('true'/0) // true
Number.isNaN('true'/'true') // true
ES5通过下面的代码,部署Number.isNaN()。
(function (global) {
var global_isNaN = global.isNaN;
Object.defineProperty(Number, 'isNaN', {
value: function isNaN(value) {
return typeof value === 'number' && global_isNaN(value);
},
configurable: true,
enumerable: false,
writable: true
});
})(this);
它们与传统的全局方法isFinite()和isNaN()的区别在于,传统方法先调用Number()将非数值的值转为数值,再进行判断,而这两个新方法只对数值有效,Number.isFinite()对于非数值一律返回false, Number.isNaN()只有对于NaN才返回true,非NaN一律返回false。
isFinite(25) // true
isFinite("25") // true
Number.isFinite(25) // true
Number.isFinite("25") // false
isNaN(NaN) // true
isNaN("NaN") // true
Number.isNaN(NaN) // true
Number.isNaN("NaN") // false
Number.isNaN(1) // false
3.Nubmer.parselnt(),Number.parseFloat()
ES6将全局方法parseInt()和parseFloat(),移植到Number对象上面,行为完全保持不变。
// ES5的写法
parseInt('12.34') // 12
parseFloat('123.45#') // 123.45
// ES6的写法
Number.parseInt('12.34') // 12
Number.parseFloat('123.45#') // 123.45
这样做的目的,是逐步减少全局性方法,使得语言逐步模块化。
Number.parseInt === parseInt // true
Number.parseFloat === parseFloat // true
4.Number.isInteger()
Number.isInteger()用来判断一个值是否为整数。需要注意的是,在JavaScript内部,整数和浮点数是同样的储存方法,所以3和3.0被视为同一个值。
Number.isInteger(25) //true
Number.isInteger(25.0) //true
Number.isInteger(25.1) //false
Number.isInteger('15') //false
Number.isInteger(true) //false
ES5可以通过以下代码,部署Number.isInteger()。
(function (global) {
var floor = Math.floor,
isFinite = global.isFinite;
Object.defineProperty(Number, 'isInteger', {
value: function isInteger(value) {
return typeof value === 'number' && isFinite(value) &&
value > -9007199254740992 && value < 9007199254740992 &&
floor(value) === value;
},
configurable: true,
enumerable: false,
writable: true
});
})(this);
5.Number.EPSILON
ES6在Number对象上,新增一个极小的常量Number。EPSILON。
Number.EPSILON
// 2.220446049250313e-16
Number.EPSILON.toFixed(20)
// '0.00000000000000022204'
引入一个这么小的量的目的,在于为浮点数计算,设置一个误差范围。我们知道浮点数计算是不精确的。
0.1 + 0.2
// 0.30000000000000004
0.1 + 0.2 - 0.3
// 5.551115123125783e-17
5.551115123125783e-17.toFixed(20)
// '0.00000000000000005551'
但是如果这个误差能够小于Number.EPSILON,我们就可以认为得到了正确结果。
5.551115123125783e-17 < Number.EPSILON
// true
因此,Number.EPSILON的实质是一个可以接受的误差范围。
function withinErrorMargin (left, right) {
return Math.abs(left - right) < Number.EPSILON;
}
withinErrorMargin(0.1 + 0.2, 0.3)
// true
withinErrorMargin(0.2 + 0.2, 0.3)
// false
6.安全证书和Number.isSafeInteger()
JavaScript能够准确表示的整数范围在 -2^53 到 2^53 之间(不含两个端点),超过这个范围,无法精确表示这个值。
Math.pow(2,53) //9007199254740992
Math.pow(2, 53) === Math.pow(2, 53) + 1
//true
上面代码中,超出2的53次方之后,一个书就不准确了。
ES6引入了Number.MAX_SAFE_INTEGER和Number.MIN_SAFE_INTEGER这两个常量,用来表示这个范围的上下限。
Number.MAX_SAFE_INTEGER === Math.pow(2, 53) - 1
// true
Number.MAX_SAFE_INTEGER === 9007199254740991
// true
Number.MIN_SAFE_INTEGER === -Number.MAX_SAFE_INTEGER
// true
Number.MIN_SAFE_INTEGER === -9007199254740991
// true
上面代码中,可以看到JavaScript能够精确表示的极限。
Number.isSafeInteger()则是用来判断一个整数是否落在这个范围之内。
Number.isSafeInteger('a') // false
Number.isSafeInteger(null) // false
Number.isSafeInteger(NaN) // false
Number.isSafeInteger(Infinity) // false
Number.isSafeInteger(-Infinity) // false
Number.isSafeInteger(3) // true
Number.isSafeInteger(1.2) // false
Number.isSafeInteger(9007199254740990) // true
Number.isSafeInteger(9007199254740992) // false
Number.isSafeInteger(Number.MIN_SAFE_INTEGER - 1) // false
Number.isSafeInteger(Number.MIN_SAFE_INTEGER) // true
Number.isSafeInteger(Number.MAX_SAFE_INTEGER) // true
Number.isSafeInteger(Number.MAX_SAFE_INTEGER + 1) // false
这个函数的实现很简单,就是跟安全整数的两个边界值比较一下。
Number.isSafeInteger = function (n) {
return (typeof n === 'number' &&
Math.round(n) === n &&
Number.MIN_SAFE_INTEGER <= n &&
n <= Number.MAX_SAFE_INTEGER);
}
实际使用这个函数时,需要注意。验证运算结果是否落在安全整数的范围内,不要只验证运算结果,而要同时验证参与运算的每个值。
Number.isSafeInteger(9007199254740993)
// false
Number.isSafeInteger(990)
// true
Number.isSafeInteger(9007199254740993 - 990)
// true
9007199254740993 - 990
// 返回结果 9007199254740002
// 正确答案应该是 9007199254740003
所以,如果只验证运算结果是否为安全整数,很可能得到错误结果。下面的函数可以同时验证两个运算数和运算结果。
function trusty (left, right, result) {
if (
Number.isSafeInteger(left) &&
Number.isSafeInteger(right) &&
Number.isSafeInteger(result)
) {
return result;
}
throw new RangeError('Operation cannot be trusted!');
}
trusty(9007199254740993, 990, 9007199254740993 - 990)
// RangeError: Operation cannot be trusted!
trusty(1, 2, 3)
// 3
7.Math对象的扩展
ES6在Math对象上新增了17个与数学相关的方法。所有这些方法都是静态方法,只能在Math对象上调用。
Math.trunc()
Math.trunc 方法用于去除一个数的小数部分返回整数部分。
Math.trunc(4.1) //4
Math.trunc(4.9) //4
Math.trunc(-4.1) // -4
Math.trunc(-4.9) // -4
Math.trunc(-0.1234) // -0
对于非数值,Math.trunc内部使用Number方法将其先转为数值。
Math.trunc('123.456')
// 123
对于空值和无法截取整数的值,返回NaN。
Math.trunc(NaN); // NaN
Math.trunc('foo'); // NaN
Math.trunc(); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.trunc = Math.trunc || function(x) {
return x < 0 ? Math.ceil(x) : Math.floor(x);
};
Math.sign
Math.sign用来判断一个数是正数、负数、还是零。
它会返回五种值。
参数为正数,返回+1;
参数为负数,返回-1;
参数为0,返回0;
参数为-0,返回-0;
其他值,返回NaN。
Math.sign(-5) // -1
Math.sign(5) // +1
Math.sign(0) // +0
Math.sign(-0) // -0
Math.sign(NaN) // NaN
Math.sign('foo'); // NaN
Math.sign(); // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.sign = Math.sign || function(x) {
x = +x; // convert to a number
if (x === 0 || isNaN(x)) {
return x;
}
return x > 0 ? 1 : -1;
};
Math.cbrt()
Math.cbrt 方法用于计算一个数的立方根。
Math.cbrt(-1) // -1
Math.cbrt(0) // 0
Math.cbrt(1) // 1
Math.cbrt(2) // 1.2599210498948734
对于非数值,Math.cbrt方法内部也是先使用Number方法将其转为数值。
Math.cbrt('8') // 2
Math.cbrt('hello') // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.cbrt = Math.cbrt || function(x) {
var y = Math.pow(Math.abs(x), 1/3);
return x < 0 ? -y : y;
};
Math.abs(x)返回一个数值的绝对值。
Math.pow(x,y)返回x的y次幂。
Math.clz32()
JavaScript的整数使用32位二进制形式表示,Math.clz32方法返回一个数的32位无符号整数形式有多少个前导0。
Math.clz32(0) // 32
Math.clz32(1) // 31
Math.clz32(1000) // 22
Math.clz32(0b01000000000000000000000000000000) // 1
Math.clz32(0b00100000000000000000000000000000) // 2
上面代码中,0的二进制形式全为0,所以有32个前导0;1的二进制形式是0b1,只占1位,所以32位之中有31个前导0;1000的二进制形式是0b1111101000,一共有10位,所以32位之中有22个前导0。
clz32这个函数名就来自”count leading zero bits in 32-bit binary representations of a number“(计算32位整数的前导0)的缩写。
左移运算符(<<)与Math.clz32方法直接相关。
Math.clz32(0) // 32
Math.clz32(1) // 31
Math.clz32(1 << 1) // 30
Math.clz32(1 << 2) // 29
Math.clz32(1 << 29) // 2
对于小数,Math.clz32方法只考虑整数部分。
Math.clz32(3.2) // 30
Math.clz32(3.9) // 30
对于空值或其他类型的值,Math.clz32方法会将它们先转为数值,然后再计算。
Math.clz32() // 32
Math.clz32(NaN) // 32
Math.clz32(Infinity) // 32
Math.clz32(null) // 32
Math.clz32('foo') // 32
Math.clz32([]) // 32
Math.clz32({}) // 32
Math.clz32(true) // 31
Math.imul
Math.imul方法返回两个数以32位带符号整数形式相乘的结果,返回的也是一个32位的带符号整数。
Math.imul(2, 4) // 8
Math.imul(-1, 8) // -8
Math.imul(-2, -2) // 4
如果只考虑最后32位,大多数情况下,Math.imul(a, b)与a * b的结果是相同的,即该方法等同于(a * b)|0的效果(超过32位的部分溢出)。之所以需要部署这个方法,是因为JavaScript有精度限制,超过2的53次方的值无法精确表示。这就是说,对于那些很大的数的乘法,低位数值往往都是不精确的,Math.imul方法可以返回正确的低位数值。
(0x7fffffff * 0x7fffffff)|0 // 0
上面这个乘法算式,返回结果为0。但是由于这两个二进制数的最低位都是1,所以这个结果肯定是不正确的,因为根据二进制乘法,计算结果的二进制最低位应该也是1。这个错误就是因为它们的乘积超过了2的53次方,JavaScript无法保存额外的精度,就把低位的值都变成了0。Math.imul方法可以返回正确的值1。
Math.imul(0x7fffffff, 0x7fffffff) // 1
Math.fround()
Math.fround方法返回一个数的单精度浮点数形式。
Math.fround(0) // 0
Math.fround(1) // 1
Math.fround(1.337) // 1.3370000123977661
Math.fround(1.5) // 1.5
Math.fround(NaN) // NaN
对于整数来说,Math.fround方法返回结果不会有任何不同,区别主要是那些无法用64个二进制位精确表示的小数。这时,Math.fround方法会返回最接近这个小数的单精度浮点数。
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.fround = Math.fround || function(x) {
return new Float32Array([x])[0];
};
Math.hypot
Math.hypot 方法返回所有参数的平方和的平方根
Math.hypot(3, 4); // 5
Math.hypot(3, 4, 5); // 7.0710678118654755
Math.hypot(); // 0
Math.hypot(NaN); // NaN
Math.hypot(3, 4, 'foo'); // NaN
Math.hypot(3, 4, '5'); // 7.0710678118654755
Math.hypot(-3); // 3
上面代码中,3的平方加上4的平方,等于5的平方。
如果参数不是数值,Math.hypot方法会将其转为数值。只要有一个参数无法转为数值,就会返回NaN。
对数方法
ES6新增了4个对数相关方法。
#######(1)Math.expm1()
Math.expm1(x)返回ex - 1,即Math.exp(x) - 1。
Math.expm1(-1) // -0.6321205588285577
Math.expm1(0) // 0
Math.expm1(1) // 1.718281828459045
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.expm1 = Math.expm1 || function(x) {
return Math.exp(x) - 1;
};
(2)Math.log1p()
Math.log1p(x)方法返回1 + x的自然对数,即Math.log(1 + x)。如果x小于-1,返回NaN。
Math.log1p(1) // 0.6931471805599453
Math.log1p(0) // 0
Math.log1p(-1) // -Infinity
Math.log1p(-2) // NaN
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log1p = Math.log1p || function(x) {
return Math.log(1 + x);
};
(3)Math.log10()
Math.log10(x)返回以10为底的x的对数。如果x小于0,则返回NaN。
Math.log10(2) // 0.3010299956639812
Math.log10(1) // 0
Math.log10(0) // -Infinity
Math.log10(-2) // NaN
Math.log10(100000) // 5
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log10 = Math.log10 || function(x) {
return Math.log(x) / Math.LN10;
};
(4)Math.log2()
Math.log2(x)返回以2为底的x的对数。如果x小于0,则返回NaN。
Math.log2(3) // 1.584962500721156
Math.log2(2) // 1
Math.log2(1) // 0
Math.log2(0) // -Infinity
Math.log2(-2) // NaN
Math.log2(1024) // 10
Math.log2(1 << 29) // 29
对于没有部署这个方法的环境,可以用下面的代码模拟。
Math.log2 = Math.log2 || function(x) {
return Math.log(x) / Math.LN2;
};
三角函数方法
ES6新增了6个三角函数方法。
Math.sinh(x) 返回x的双曲正弦(hyperbolic sine)
Math.cosh(x) 返回x的双曲余弦(hyperbolic cosine)
Math.tanh(x) 返回x的双曲正切(hyperbolic tangent)
Math.asinh(x) 返回x的反双曲正弦(inverse hyperbolic sine)
Math.acosh(x) 返回x的反双曲余弦(inverse hyperbolic cosine)
Math.atanh(x) 返回x的反双曲正切(inverse hyperbolic tangent)
8.Math.signbit()
Math.sign()用来判断一个值的正负,但是如果参数是-0,它会返回-0。
这导致对于判断符号位的正负,Math.sign()不是很有用。JavaScript 内部使用64位浮点数(国际标准IEEE 754)表示数值,IEEE 754规定第一位是符号位,0表示正数,1表示负数。所以会有两种零,+0是符号位为0时的零值,-0是符号位为1时的零值。实际编程中,判断一个值是+0还是-0非常麻烦,因为它们是相等的。
+0 === -0 // true
目前,有一个提案,引入了Math.signbit()
方法判断一个数的符号位是否设置了。
Math.signbit(2) //false
Math.signbit(-2) //true
Math.signbit(0) //false
Math.signbit(-0) //true
可以看到,该方法正确返回了-0的符号位是设置了的。
该方法的算法如下。
如果参数是NaN,返回false
如果参数是-0,返回true
如果参数是负值,返回true
其他情况返回false
9.指数运算符
ES2016 新增了一个指数运算符(**)。
2 ** 2 // 4
2 ** 3 // 8
指数运算符可以与等号结合,形成一个新的赋值运算符(**=)。
let a = 1.5;
a **= 2;
// 等同于 a = a * a;
let b = 4;
b **= 3;
// 等同于 b = b * b * b;
注意,在 V8 引擎中,指数运算符与Math.pow的实现不相同,对于特别大的运算结果,两者会有细微的差异。
Math.pow(99, 99)
// 3.697296376497263e+197
99 ** 99
// 3.697296376497268e+197
上面代码中,两个运算结果的最后一位有效数字是有差异的。