女儿数学-求所有数字之和-2020-12-13

题目

求2000 ~ 3000这1001个连续自然数的全部数字之和。

解答

先求2000 ~ 2999这1000个数字之和:
(2 + 2 + 9 + 9 + 9)✖️ (1000 ➗ 2) = 15500
3000这个数的数字之和:
3 + 0 + 0 + 0 = 3
15500 + 3 = 15503
答:2000 ~ 3000这1001个连续自然数的全部数字之和为15503

对称思想

(2 + 2 + 9 + 9 + 9)✖️ (1000 ➗ 2) = 15500 这个算式是什么意思?为什么可以这么做?
其实这里运用了数学中常用的一种思想:对称思想;将1000 ✖️ 4 = 4000个数字的加法运算转换成了上面的乘法运算。推导过程如下图:

1991607855524_.pic_hd.jpg

条件1:个数为偶数个

既然是“对称”,那么数字个数为偶数个。所以2000 ~ 3000这1001个数要拿掉一个3000,变成1000个数。
再举个例子,比如1 ~ 99这99个数,如果想用对称性,那么就要加个数字0,变成0 ~ 99这100个数;

条件2:每组的数字和要相等

是不是只需要偶数个数就具有对称性呢?答案是否定的。下面举一个偶数个,但是部队称的例子。比如简单一点:5 ~ 16这12个数就“不对称”

2001607856440_.pic_hd.jpg

同样道理:

  • 2000 ~ 2999这1000个数是“对称”的;但是2001 ~ 3000这1000个数是“不对称”的。
  • 0 ~ 99这100个数是“对称”的;但是1 ~ 100这100个数是“不对称”的;

常见的对称数串

既然我们的目的是利用“对称”思想来简化数字之和的运算,那么“不对称”的那些数串对我们就没有意义;下面这些“对称”的典型数串队我们解题就非常有意义,需要牢牢记住,并灵活运用:

0 ~ 9;
0 ~ 19;
0 ~ 29;
... ...
0 ~ 99;

=========

0 ~ 199;
0 ~ 299;
... ...
0 ~ 999;

=========

0 ~ 1999;
0 ~ 2999;
... ...
0 ~ 9999;

方法2:利用典型数串求解

  • 第1步:补上一个典型“对称”数串0 ~ 1999

  • 第2步:利用对称性,求“对称”数串0 ~ 2999的所有数字和:
    (0 + 2 + 9 + 9 + 9)✖️ (3000 ➗ 2)
    = 29 ✖️1500
    = 43500

  • 第3步:计算补上的“对称”数串0 ~ 1999的数字和,这部分要减掉
    (0 + 1 + 9 + 9 + 9)✖️ (2000 ➗ 2)
    = 28 ✖️ 1000
    = 28000

  • 第4步:减去补上的
    43500 - 28000 = 15500

  • 第5步:加上多余3000这个数字的数字和
    3 + 0 + 0 + 0 = 3

  • 所以,最终结果是:

15500 + 3 = 15503

这个结果和方法1的结果是一样的;

小结:

推荐用方法2,记住这些典型的“对称”数串,并通过分割,添补等辅助手段,达到简化计算的目的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容