深度学习笔记 - 105 - 神经网络预测单车数量

Predict daily bike rental ridership using neural network

# IMPORT
%matplotlib inline
%config InlineBackend.figure_format = 'retina'

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

Load and prepare the data

data_path = 'Bike-Sharing-Dataset/hour.csv'
rides = pd.read_csv(data_path)

rides.head()
rides[:24*10].plot(x='dteday', y='cnt')
image.png

Dummy variables
Here we have some categorical variables like season, weather, month. To include these in our model, we'll need to make binary dummy variables. This is simple to do with Pandas thanks to get_dummies().

dummy_fields = ['season', 'weathersit', 'mnth', 'hr', 'weekday']
for each in dummy_fields:
    dummies = pd.get_dummies(rides[each], prefix=each, drop_first=False)
    rides = pd.concat([rides, dummies], axis=1)

fields_to_drop = ['instant', 'dteday', 'season', 'weathersit', 
                  'weekday', 'atemp', 'mnth', 'workingday', 'hr']
data = rides.drop(fields_to_drop, axis=1)
data.head()

Scaling target variables

quant_features = ['casual', 'registered', 'cnt', 'temp', 'hum', 'windspeed']
# Store scalings in a dictionary so we can convert back later
scaled_features = {}
for each in quant_features:
    mean, std = data[each].mean(), data[each].std()
    scaled_features[each] = [mean, std]
    data.loc[:, each] = (data[each] - mean)/std

Splitting the data into training, testing, and validation sets

# Save data for approximately the last 21 days 
test_data = data[-21*24:]

# Now remove the test data from the data set 
data = data[:-21*24]

# Separate the data into features and targets
target_fields = ['cnt', 'casual', 'registered']
features, targets = data.drop(target_fields, axis=1), data[target_fields]
test_features, test_targets = test_data.drop(target_fields, axis=1), test_data[target_fields]

# Hold out the last 60 days or so of the remaining data as a validation set
train_features, train_targets = features[:-60*24], targets[:-60*24]
val_features, val_targets = features[-60*24:], targets[-60*24:]

Build the network

image.png
  1. Implement the sigmoid function to use as the activation function. Set self.activation_function in init to your sigmoid function.
  1. Implement the forward pass in the train method.
  2. Implement the backpropagation algorithm in the train method, including calculating the output error.
  3. Implement the forward pass in the run method.
class NeuralNetwork(object):
    def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate):
        # Set number of nodes in input, hidden and output layers.
        self.input_nodes = input_nodes
        self.hidden_nodes = hidden_nodes
        self.output_nodes = output_nodes

        # Initialize weights
        self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, 
                                       (self.input_nodes, self.hidden_nodes))

        self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, 
                                       (self.hidden_nodes, self.output_nodes))
        self.lr = learning_rate
        
        #### TODO: Set self.activation_function to your implemented sigmoid function ####
        #
        # Note: in Python, you can define a function with a lambda expression,
        # as shown below.
        self.activation_function = lambda x : 1/(1 + np.exp(-x))  # Replace 0 with your sigmoid calculation.
        
        ### If the lambda code above is not something you're familiar with,
        # You can uncomment out the following three lines and put your 
        # implementation there instead.
        #
        #def sigmoid(x):
        #    return 0  # Replace 0 with your sigmoid calculation here
        #self.activation_function = sigmoid
                    
    
    def train(self, features, targets):
        ''' Train the network on batch of features and targets. 
        
            Arguments
            ---------
            
            features: 2D array, each row is one data record, each column is a feature
            targets: 1D array of target values
        
        '''
        n_records = features.shape[0]
        delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape)
        delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape)
        for X, y in zip(features, targets):
            #### Implement the forward pass here ####
            ### Forward pass ###
            # TODO: Hidden layer - Replace these values with your calculations.
            hidden_inputs = np.dot(X, self.weights_input_to_hidden) # signals into hidden layer
            hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer

            # TODO: Output layer - Replace these values with your calculations.
            final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer
            final_outputs = final_inputs # signals from final output layer
            
            #### Implement the backward pass here ####
            ### Backward pass ###

            # TODO: Output error - Replace this value with your calculations.
            error = y - final_outputs # Output layer error is the difference between desired target and actual output.
            
            # TODO: Calculate the hidden layer's contribution to the error
            output_error_term = error
            
            hidden_error = np.dot(output_error_term, self.weights_hidden_to_output.T)
            
            # TODO: Backpropagated error terms - Replace these values with your calculations.
            
            hidden_error_term = hidden_error * hidden_outputs * (1 - hidden_outputs)

            # Weight step (input to hidden)
            delta_weights_i_h += hidden_error_term * X[:, None]
            # Weight step (hidden to output)
            delta_weights_h_o += output_error_term * hidden_outputs[:,None]

        # TODO: Update the weights - Replace these values with your calculations.
        self.weights_hidden_to_output += self.lr * delta_weights_h_o / n_records # update hidden-to-output weights with gradient descent step
        self.weights_input_to_hidden += self.lr * delta_weights_i_h  / n_records  # update input-to-hidden weights with gradient descent step
 
    def run(self, features):
        ''' Run a forward pass through the network with input features 
        
            Arguments
            ---------
            features: 1D array of feature values
        '''
        
        #### Implement the forward pass here ####
        # TODO: Hidden layer - replace these values with the appropriate calculations.
        hidden_inputs = np.dot(features, self.weights_input_to_hidden) # signals into hidden layer
        hidden_outputs = self.activation_function(hidden_inputs) # signals from hidden layer
        
        # TODO: Output layer - Replace these values with the appropriate calculations.
        final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) # signals into final output layer
        final_outputs = final_inputs # signals from final output layer 
        
        return final_outputs

Training the network

import sys

### Set the hyperparameters here ###
iterations = 100
learning_rate = 0.1
hidden_nodes = 2
output_nodes = 1

N_i = train_features.shape[1]
network = NeuralNetwork(N_i, hidden_nodes, output_nodes, learning_rate)

losses = {'train':[], 'validation':[]}
for ii in range(iterations):
    # Go through a random batch of 128 records from the training data set
    batch = np.random.choice(train_features.index, size=128)
    X, y = train_features.ix[batch].values, train_targets.ix[batch]['cnt']
                             
    network.train(X, y)
    
    # Printing out the training progress
    train_loss = MSE(network.run(train_features).T, train_targets['cnt'].values)
    val_loss = MSE(network.run(val_features).T, val_targets['cnt'].values)
    sys.stdout.write("\rProgress: {:2.1f}".format(100 * ii/float(iterations)) \
                     + "% ... Training loss: " + str(train_loss)[:5] \
                     + " ... Validation loss: " + str(val_loss)[:5])
    sys.stdout.flush()
    
    losses['train'].append(train_loss)
    losses['validation'].append(val_loss)
plt.plot(losses['train'], label='Training loss')
plt.plot(losses['validation'], label='Validation loss')
plt.legend()
_ = plt.ylim()
fig, ax = plt.subplots(figsize=(8,4))

mean, std = scaled_features['cnt']
predictions = network.run(test_features).T*std + mean
ax.plot(predictions[0], label='Prediction')
ax.plot((test_targets['cnt']*std + mean).values, label='Data')
ax.set_xlim(right=len(predictions))
ax.legend()

dates = pd.to_datetime(rides.ix[test_data.index]['dteday'])
dates = dates.apply(lambda d: d.strftime('%b %d'))
ax.set_xticks(np.arange(len(dates))[12::24])
_ = ax.set_xticklabels(dates[12::24], rotation=45)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容

  • 昨日做下的事: 选莱美音乐,编莱美搏击操动作。 把很多事情搞清,比如拿卡量、出量总数、是否加90……。 去二田练腿...
    文建伟CZYH阅读 396评论 0 0
  • ​ 作者:鹏程学院导师 朱延嵩 “璇玑图”是前秦将军窦滔的妻子苏蕙为使移情别恋的丈夫迷途知返而创作的,她将840字...
    笔记工场阅读 765评论 0 1
  • 2017年10月31日 九月十二 星期二 阴 今天集体学员一起乘坐大巴去了怀柔的锦会有机农庄以及昌平的平人农场参观...
    土蜂阅读 250评论 0 0
  • 【读经】 诗篇52 【金句】 勇士啊,你为何以作恶自夸?神的慈爱是常存的。(诗篇 52:1 和合本) 【感动】 最...
    chanor阅读 602评论 0 0