示例调用预训练模型(deeplabv3_resnet101)对VOCSegmentation数据进行图像分割实验。
- PyTorch的DeepLabv3-ResNet101语义分割模型是在COCO 2017训练集上的一个子集训练得到的,相当于PASCAL VOC数据集,支持20个类别。
- Deeplabv3-ResNet101由具有ResNet-101主干的Deeplabv3模型构成。
引入相关包
%matplotlib inline
import os
import copy
import numpy as np
from skimage.segmentation import mark_boundaries
import matplotlib.pylab as plt
from PIL import Image
import torch
from torch import nn
from torch import optim
from torchvision.datasets import VOCSegmentation
from torchvision.transforms.functional import to_tensor, to_pil_image
from torch.utils.data import DataLoader
from torchvision.models.segmentation import deeplabv3_resnet101
from torch.optim.lr_scheduler import ReduceLROnPlateau
构建数据 dataset
class DemoVOCSegmentation(VOCSegmentation):
def __getitem__(self, index):
img = Image.open(self.images[index]).convert('RGB')
target = Image.open(self.masks[index])
if self.transforms is not None:
augmented = self.transforms(image=np.array(img), mask=np.array(target))
img = augmented['image']
target = augmented['mask']
target[target>20] = 0
img = to_tensor(img)
target = torch.from_numpy(target).type(torch.long)
return img, target
from albumentations import (
HorizontalFlip,
Compose,
Resize,
Normalize)
mean = [0.485, 0.456, 0.406]
std = [0.229, 0.224, 0.225]
h, w = 520,520
transform_train = Compose([ Resize(h,w),
HorizontalFlip(p=0.5),
Normalize(mean=mean, std=std)])
transform_val = Compose([ Resize(h,w),
Normalize(mean=mean, std=std)])
数据地址
path_data = "./data/mos/"
# 创建dataset
train_ds = DemoVOCSegmentation(path_data,
year='2012',
image_set='train',
download=False,
transforms=transform_train)
print(len(train_ds))
# 1464
val_ds = DemoVOCSegmentation(path_data,
year='2012',
image_set='val',
download=False,
transforms=transform_val)
print(len(val_ds)) #1449
- 数据查看(可视化)
np.random.seed(0)
num_classes =21
COLORS = np.random.randint(0, 2, size=(num_classes+1, 3),dtype="uint8")
def show_img_target(img, target):
if torch.is_tensor(img):
img = to_pil_image(img)
target = target.numpy()
for ll in range(num_classes):
mask = (target==ll)
img = mark_boundaries(np.array(img) ,
mask,
outline_color=COLORS[ll],
color=COLORS[ll])
plt.imshow(img)
def re_normalize (x, mean = mean, std= std):
x_r= x.clone()
for c, (mean_c, std_c) in enumerate(zip(mean, std)):
x_r [c] *= std_c
x_r [c] += mean_c
return x_r
img, mask = train_ds[6]
print(img.shape, img.type(),torch.max(img))
print(mask.shape, mask.type(),torch.max(mask))
plt.figure(figsize=(20,20))
img_r= re_normalize(img)
plt.subplot(1, 3, 1)
plt.imshow(to_pil_image(img_r))
plt.subplot(1, 3, 2)
plt.imshow(mask)
plt.subplot(1, 3, 3)
show_img_target(img_r, mask)
"""
torch.Size([3, 520, 520]) torch.FloatTensor tensor(2.6400)
torch.Size([520, 520]) torch.LongTensor tensor(4)
"""
数据加载器及加载模型
# dataloader
train_dl = DataLoader(train_ds, batch_size=2, shuffle=True)
val_dl = DataLoader(val_ds, batch_size=8, shuffle=False)
# 加载预训练模型
model=deeplabv3_resnet101(pretrained=True, num_classes=21)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model=model.to(device)
# print(model)
模型部署
model.eval()
with torch.no_grad():
for xb, yb in val_dl:
yb_pred = model(xb.to(device))
yb_pred = yb_pred["out"].cpu()
print(yb_pred.shape)
yb_pred = torch.argmax(yb_pred,axis=1)
break
print(yb_pred.shape)
plt.figure(figsize=(20,20))
n=4
img, mask= xb[n], yb_pred[n]
img_r= re_normalize(img)
plt.subplot(1, 3, 1)
plt.imshow(to_pil_image(img_r))
plt.subplot(1, 3, 2)
plt.imshow(mask)
plt.subplot(1, 3, 3)
show_img_target(img_r, mask)
"""
torch.Size([16, 21, 520, 520])
torch.Size([16, 520, 520])
"""
模型训练(因为电脑显卡太低,微调训练无法实验测试)
def get_lr(opt):
for param_group in opt.param_groups:
return param_group['lr']
def loss_batch(loss_func, output, target, opt=None):
loss = loss_func(output, target)
if opt is not None:
opt.zero_grad()
loss.backward()
opt.step()
return loss.item(), None
# 训练模型
def loss_epoch(model,loss_func,dataset_dl,sanity_check=False,opt=None):
running_loss = 0.0
len_data = len(dataset_dl.dataset)
for xb, yb in dataset_dl:
xb = xb.to(device)
yb = yb.to(device)
output = model(xb)["out"]
loss_b, _ = loss_batch(loss_func, output, yb, opt)
running_loss += loss_b
if sanity_check is True:
break
loss = running_loss / float(len_data)
return loss, None
def train_val(model, params):
num_epochs=params["num_epochs"]
loss_func=params["loss_func"]
opt=params["optimizer"]
train_dl=params["train_dl"]
val_dl=params["val_dl"]
sanity_check=params["sanity_check"]
lr_scheduler=params["lr_scheduler"]
path2weights=params["path2weights"]
loss_history={
"train": [],
"val": []}
metric_history={
"train": [],
"val": []}
best_model_wts = copy.deepcopy(model.state_dict())
best_loss=float('inf')
for epoch in range(num_epochs):
current_lr=get_lr(opt)
print('Epoch {}/{}, current lr={}'.format(epoch, num_epochs - 1, current_lr))
model.train()
train_loss, train_metric=loss_epoch(model,loss_func,train_dl,sanity_check,opt)
loss_history["train"].append(train_loss)
metric_history["train"].append(train_metric)
model.eval()
with torch.no_grad():
val_loss, val_metric=loss_epoch(model,loss_func,val_dl,sanity_check)
loss_history["val"].append(val_loss)
metric_history["val"].append(val_metric)
if val_loss < best_loss:
best_loss = val_loss
best_model_wts = copy.deepcopy(model.state_dict())
torch.save(model.state_dict(), path2weights)
print("Copied best model weights!")
lr_scheduler.step(val_loss)
if current_lr != get_lr(opt):
print("Loading best model weights!")
model.load_state_dict(best_model_wts)
print("train loss: %.6f" %(train_loss))
print("val loss: %.6f" %(val_loss))
print("-"*10)
model.load_state_dict(best_model_wts)
return model, loss_history, metric_history
- 训练模型
criterion = nn.CrossEntropyLoss(reduction="sum")
opt = optim.Adam(model.parameters(), lr=1e-6)
lr_scheduler = ReduceLROnPlateau(opt, mode='min',factor=0.5, patience=20,verbose=1)
path2models= "./models/mos/"
if not os.path.exists(path2models):
os.mkdir(path2models)
params_train={
"num_epochs": 10,
"optimizer": opt,
"loss_func": criterion,
"train_dl": train_dl,
"val_dl": val_dl,
"sanity_check": True,
"lr_scheduler": lr_scheduler,
"path2weights": path2models+"sanity_weights.pt",
}
model, loss_hist, _ = train_val(model, params_train)
- 可视化结果
num_epochs=params_train["num_epochs"]
plt.title("Train-Val Loss")
plt.plot(range(1,num_epochs+1),loss_hist["train"],label="train")
plt.plot(range(1,num_epochs+1),loss_hist["val"],label="val")
plt.ylabel("Loss")
plt.xlabel("Training Epochs")
plt.legend()
plt.show()