2018-05-29 齐次坐标02

一直对齐次坐标这个概念的理解不够彻底,只见大部分的书中说道“齐次坐标在仿射变换中非常的方便”,然后就没有了后文,今天在一个叫做“三百年 重生”的博客上看到一篇关于透视投影变换的探讨的文章,其中有对齐次坐标有非常精辟的说明,特别是针对这样一句话进行了有力的证明:“齐次坐标表示是计算机图形学的重要手段之一,它既能够用来明确区分向量和点,同时也更易用于进行仿射(线性)几何变换。”—— F.S. Hill, JR。

     由于作者对齐次坐标真的解释的不错,我就原封不动的摘抄过来:

对于一个 向量 以及基 oabc ,可以找到一组坐标 (v1,v2,v3) ,使得 = v1 a + v2 b + v3 c            ( 1 

 而对于一个  ,则可以找到一组坐标( p1,p2,p3 ),使得 – o = p1 a + p2 b + p3  2 ),

从上面对 向量 和  的表达,我们可以看出为了在坐标系中表示一个  (如 p ),我们把点的位置看作是对这个基的原点 o 所进行的一个位移,即一个向量—— p – o (有的书中把这样的向量叫做位置向量 ——起始于坐标原点的特殊向量),我们在表达这个向量的同时用等价的方式表达出了点

p:o + p1 a + p2 b + p3 c (3)

(1)(3) 是坐标系下表达一个 向量 和 的不同表达方式。这里可以看出,虽然都是用代数分量的形式表达向量和点,但表达一个点比一个向量需要额外的信息。如果我写出一个代数分量表达 (1, 4, 7) ,谁知道它是个向量还是个点!

    我们现在把( 1 )( 3 )写成矩阵的形式:v = (v1 v2 v3 0) X (a b c o)

p = (p1 p2 p3 1) X (a b c o), 这里 (a,b,c,o) 是坐标基矩阵,右边的列向量分别是向量 和点 在基下的坐标。 这样,向量和点在同一个基下就有了不同的表达:3D 向量 的第 4 个代数分量是 0 ,而 3D 点 的第 4 个代数分量是 1 。像这种这种用 4 个代数分量表示 3D 几何概念的方式是一种齐次坐标表示。

这样,上面的 (1, 4, 7) 如果写成( 1,4,7,0 ),它就是个向量;如果是 (1,4,7,1) ,它就是个点。 下面是如何在普通坐标 (Ordinary Coordinate) 和齐次坐标 (Homogeneous Coordinate) 之间进行转换:

(1) 从普通坐标转换成齐次坐标时

   如果 (x,y,z) 是个点,则变为 (x,y,z,1);

   如果 (x,y,z) 是个向量,则变为 (x,y,z,0)

(2)从齐次坐标转换成普通坐标时    

   如果是 (x,y,z,1) ,则知道它是个点,变成 (x,y,z);

   如果是 (x,y,z,0) ,则知道它是个向量,仍然变成 (x,y,z)

以上是通过齐次坐标来区分向量和点的方式。从中可以思考得知,对于平移 T 、旋转 R 、缩放 S 这 3 个最常见的仿射变换,平移变换只对于点才有意义,因为普通向量没有位置概念,只有大小和方向.

而旋转和缩放对于向量和点都有意义,你可以用类似上面齐次表示来检测。从中可以看出,齐次坐标用于仿射变换非常方便。

此外,对于一个普通坐标的  P=(Px, Py, Pz) ,有对应的一族齐次坐标 (wPx, wPy, wPz, w) ,其中 w 不等于零 。比如, P(1, 4, 7) 的齐次坐 标有 (1, 4, 7, 1) 、( 2, 8, 14, 2 )、( -0.1, -0.4, -0.7, -0.1 )等等 。 因此,如果把一个点从普通坐标变成齐次坐标,给 x,y,z 乘上同一个非零数 w ,然后增加第 4 个分量 w ;如果把一个齐 次坐标转换成普通坐标,把 前三个坐标同时除以第 4 个坐标,然后去掉第 4 个分量。

由于齐次坐标使用了 4 个分量来表达 3D 概念,使得平移变换可以使用矩阵进行,从而如 F.S. Hill, JR 所说,仿射(线性)变换的进行 更加方便。由于图形硬件已经普遍地支持齐次坐标与矩阵乘法,因此更加促进了齐次坐标使用,使得它似乎成为图形学中的一个标准。

    以上很好的阐释了齐次坐标的作用及运用齐次坐标的好处。其实在图形学的理论中,很多已经被封装的好的API也是很有研究 的,要想成为一名专业的计算机 图形学 的 学习者,除了知其然必须还得知其所以然。 这样在遇到问题的时候才能迅速定位问题的根源,从而解决问题。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容

  • 图片来源: . 术语 在大多数3D工作中,我们参照的依据是欧几里得几何学中的三维空间(X, Y, Z)。但在某些情...
    StanGame阅读 29,878评论 9 52
  • TPR VS 手语 新2的学习,有一个有趣又有挑战性的环节就是TPR。在与儿子的互动学习中,我觉得可以和手语来相...
    阿笨猫_6bd5阅读 408评论 0 1
  • 2017/12/4 笑傲雪里蕻 周末早上,我在路边等老公去停车。旁边有个卖雪里蕻的老头,人力三轮车上压着几捆新鲜碧...
    李小未520阅读 195评论 0 0
  • 今天进展不错,效率也有所提高,注意力再集中一点就更好啦! 昨天在互动的时候,抢了好几个最佳红包,今天逐个加微信送书...
    拾玖___阅读 263评论 0 0
  • 是和尚。
    凡三阅读 199评论 5 1