python决策树(二叉树、树)的可视化

问题描述

在我学习机器学习实战-决策树部分,欲可视化决策树结构。最终可视化结果:

在这里插入图片描述
在这里插入图片描述

解决方案

决策树由嵌套字典组成,如:

{"no surfacing": {0: "no", 1: {"flippers": {0: "no", 1: "yes"}}}}

{'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic': {'no': {'age': {'young': 'soft', 'presbyopic': {'prescript': {'myope': 'no lenses', 'hyper': 'soft'}}, 'pre': 'soft'}}, 'yes': {'prescript': {'myope': 'hard', 'hyper': {'age': {'young': 'hard', 'presbyopic': 'no lenses', 'pre': 'no lenses'}}}}}}}}

使用graphviz包中的画点和连线。代码如下:

"""
@author: lishihang
@software: PyCharm
@file: TreeVis.py
@time: 2018/11/29 22:20
"""
from graphviz import Digraph


def plot_model(tree, name):
    g = Digraph("G", filename=name, format='png', strict=False)
    first_label = list(tree.keys())[0]
    g.node("0", first_label)
    _sub_plot(g, tree, "0")
    g.view()


root = "0"


def _sub_plot(g, tree, inc):
    global root

    first_label = list(tree.keys())[0]
    ts = tree[first_label]
    for i in ts.keys():
        if isinstance(tree[first_label][i], dict):
            root = str(int(root) + 1)
            g.node(root, list(tree[first_label][i].keys())[0])
            g.edge(inc, root, str(i))
            _sub_plot(g, tree[first_label][i], root)
        else:
            root = str(int(root) + 1)
            g.node(root, tree[first_label][i])
            g.edge(inc, root, str(i))


d1 = {"no surfacing": {0: "no", 1: {"flippers": {0: "no", 1: "yes"}}}}

d2 = {'tearRate': {'reduced': 'no lenses', 'normal': {'astigmatic': {'yes': {
    'prescript': {'myope': 'hard', 'hyper': {'age': {'young': 'hard', 'presbyopic': 'no lenses', 'pre': 'no lenses'}}}},
    'no': {'age': {'young': 'soft', 'presbyopic': {
        'prescript': {'myope': 'no lenses',
                      'hyper': 'soft'}},
                   'pre': 'soft'}}}}}}

plot_model(d1, "hello.gv")
plot_model(d2, "hello2.gv")

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,378评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,356评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,702评论 0 342
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,259评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,263评论 5 371
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,036评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,349评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,979评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,469评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,938评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,059评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,703评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,257评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,262评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,485评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,501评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,792评论 2 345

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,294评论 0 10
  • 一夜秋雨终落尽 黄了几树叶 抚一把新添的哀思 呆看这一地凌乱 停落在残瓣上的生命 已被洗去了茁壮的猖狂 挣扎在雨后...
    逸欢阅读 155评论 0 0
  • 【0210读书感悟】晓阳 书名:《周国平论阅读》 作者:周国平 金句:做一个真正的读者,就是加入到人类精神文明的传...
    阿凌_ee52阅读 157评论 0 0
  • 以后无聊就有事情做了 好啦好啦 开始午睡
    邱了了阅读 229评论 5 6
  • 最近不少大咖,都爱上了一个演员。 刘烨爱他。 宋丹丹爱他。 章子怡也爱他。 三位大咖都陶醉到没办法睁眼睛说话了.....
    Sir电影阅读 13,929评论 38 258