Elasticsearch架构原理

Elasticsearch分布式架构原理

  • 一个index包含多个shard,也就是一个index存在多个服务器上
  • 每个shard都是一个最小工作单元,承载部分数据,比如有三台服务器,现在有三条数据,这三条数据在三台服务器上各方一条
  • 增减节点时,shard会自动在nodes中负载均衡
  • primary shard和replica shard,每个document肯定只存在于某一个primary shard以及其对应的replica shard中,不可能存在于多个primary shard
  • replica shard是primary shard的副本,负责容错,以及承担读请求负载
  • primary shard的数量在创建索引的时候就固定了,replica shard的数量可以随时修改
  • primary shard的默认数量是5,replica默认是1,默认有10个shard,5个primary shard,5个replica shard
  • primary shard不能和自己的replica shard放在同一个节点上(否则节点宕机,primary shard和副本都丢失,起不到容错的作用),但是可以和其他primary shard的replica shard放在同一个节点上

ES写入数据的过程

简单流程
  • 客户端选择一个node发送请求过去,这个node就是coordinating node (协调节点)
  • coordinating node,对document进行路由,将请求转发给对应的node
  • 实际上的node上的primary shard处理请求,然后将数据同步到replica node
  • coordinating node,如果发现primary node和所有的replica node都搞定之后,就会返回请求到客户端
    这个路由简单的说就是取模算法,比如说现在有3太服务器,这个时候传过来的id是5,那么5%3=2,就放在第2太服务器
写入数据底层原理
WX20191231-205324@2x.png
  • 数据先写入到buffer里面,在buffer里面的数据时搜索不到的,同时将数据写入到translog日志文件之中
  • 如果buffer快满了,或是一段时间之后(定时),就会将buffer数据refresh到一个新的OS cache之中,然后每隔1秒,就会将OS cache的数据写入到segment file之中,但是如果每一秒钟没有新的数据到buffer之中,就会创建一个新的空的segment file,只要buffer中的数据被refresh到OS cache之中,就代表这个数据可以被搜索到了。当然可以通过restful api 和Java api,手动的执行一次refresh操作,就是手动的将buffer中的数据刷入到OS cache之中,让数据立马搜索到,只要数据被输入到OS cache之中,buffer的内容就会被清空了。同时进行的是,数据到shard之后,就会将数据写入到translog之中,每隔5秒将translog之中的数据持久化到磁盘之中
  • 重复以上的操作,每次一条数据写入buffer,同时会写入一条日志到translog日志文件之中去,这个translog文件会不断的变大,当达到一定的程度之后,就会触发commit操作。
  • 将一个commit point写入到磁盘文件,里面标识着这个commit point 对应的所有segment file
  • 强行将OS cache 之中的数据都fsync到磁盘文件中去。
    解释:translog的作用:在执行commit之前,所有的而数据都是停留在buffer或OS cache之中,无论buffer或OS cache都是内存,一旦这台机器死了,内存的数据就会丢失,所以需要将数据对应的操作写入一个专门的日志问价之中,一旦机器出现宕机,再次重启的时候,es会主动的读取translog之中的日志文件的数据,恢复到内存buffer和OS cache之中。
  • 将现有的translog文件进行清空,然后在重新启动一个translog,此时commit就算是成功了,默认的是每隔30分钟进行一次commit,但是如果translog的文件过大,也会触发commit,整个commit过程就叫做一个flush操作,我们也可以通过ES API,手动执行flush操作,手动将OS cache 的数据fsync到磁盘上面去,记录一个commit point,清空translog文件
    补充:其实translog的数据也是先写入到OS cache之中的,默认每隔5秒之中将数据刷新到硬盘中去,也就是说,可能有5秒的数据仅仅停留在buffer或者translog文件的OS cache中,如果此时机器挂了,会丢失5秒的数据,但是这样的性能比较好,我们也可以将每次的操作都必须是直接fsync到磁盘,但是性能会比较差。
  • 如果时删除操作,commit的时候会产生一个.del文件,里面讲某个doc标记为delete状态,那么搜索的时候,会根据.del文件的状态,就知道那个文件被删除了。
  • 如果时更新操作,就是讲原来的doc标识为delete状态,然后重新写入一条数据即可。
  • buffer每次更新一次,就会产生一个segment file 文件,所以在默认情况之下,就会产生很多的segment file 文件,将会定期执行merge操作
  • 每次merge的时候,就会将多个segment file 文件进行合并为一个,同时将标记为delete的文件进行删除,然后将新的segment file 文件写入到磁盘,这里会写一个commit point,标识所有的新的segment file,然后打开新的segment file供搜索使用。
查询原理

查询过程大体上分为查询和取回这两个阶段,广播查询请求到所有相关分片,并将它们的响应整合成全局排序后的结果集合,这个结果集合会返回给客户端。

查询阶段
  • 当一个节点接收到一个搜索请求,这这个节点就会变成协调节点,第一步就是将广播请求到搜索的每一个节点的分片拷贝,查询请求可以被某一个主分片或某一个副分片处理,协调节点将在之后的请求中轮训所有的分片拷贝来分摊负载。
  • 每一个分片将会在本地构建一个优先级队列,如果客户端要求返回结果排序中从from 名开始的数量为size的结果集,每一个节点都会产生一个from+size大小的结果集,因此优先级队列的大小也就是from+size,分片仅仅是返回一个轻量级的结果给协调节点,包括结果级中的每一个文档的ID和进行排序所需要的信息。
  • 协调节点将会将所有的结果进行汇总,并进行全局排序,最总得到排序结果。
取值阶段
  • 查询过程得到的排序结果,标记处哪些文档是符合要求的,此时仍然需要获取这些文档返回给客户端
  • 协调节点会确定实际需要的返回的文档,并向含有该文档的分片发送get请求,分片获取的文档返回给协调节点,协调节点将结果返回给客户端
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容