高中数学基础04:数列与不等式

内容来自百度百科知识以及东方耀老师笔记内容的整合

1、等差数列

1.1 定义

等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

1.2 公式
1.2.1 定义式

对于数列{

image

},若满足:

image

则称该数列为等差数列。其中,公差d为一常数,n为正整数。

1.2.2 通项公式

等差数列通项公式通过定义式叠加而来。

如果一个等差数列的首项为a1,公差为d,那么该等差数列第n项的表达式为:

image

或:

image
1.2.3 求和公式

若一个等差数列的首项为a1,末项为an那么该等差数列和表达式为:

image

即(首项+末项)×项数÷2。

1.2.4 前n项和公式

注意:n是正整数(相当于n个等差中项之和)。等差数列前N项求和,实际就是梯形公式的妙用:上底为a1首项,下底为a1+(n-1)d,高为n。即:[a1+a1+(n-1)d]* n/2={2a1 n+ n (n-1)d} /2,也可写成:

image
1.3 性质
image.png
1.4 通项公式推导
image.png
1.5 求和公式推导
image.png

2、等比数列

2.1 定义

等比数列是指从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列,常用G、P表示。这个常数叫做等比数列的公比,公比通常用字母q表示(q≠0),等比数列a1≠ 0。其中{an}中的每一项均不为0。注:q=1 时,an为常数列。

2.2 公式

(1)定义式:

image

(3)求和公式:

image
image
2.3 性质
image.png
2.4 单调性
image.png
2.5 通项公式推导过程
image.png
2.6 求和公式推导过程
image.png

3、等比数列

3.1 定义

一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式。

3.2 不等关系与不等式
image.png
3.3 不等式证明的几种方法
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容

  • 【1】7,9,-1,5,( ) A、4;B、2;C、-1;D、-3 分析:选D,7+9=16;9+(-1)=8;(...
    Alex_bingo阅读 18,820评论 1 19
  • Duy倒了杯水放在桌子上 我看了看他问:水热吗? 她眼中迷离得有些躲闪:热 水中的雾气缭绕 我问:为什么不给我一杯...
    阿冷冷阅读 226评论 0 0
  • 迟发。 亲爱的自己。 part.1 随着时间一步一步逃走,你再也没有小时候那种每天每年过得很慢,可以享受到一切美好...
    半生2阅读 164评论 0 0
  • 查尔斯顿山夏之旅 在美国的拉斯维加斯郊外,大约四十分钟车程,便是一个叫查尔斯顿山的地方了。来过拉市多次,...
    黄磊的简书阅读 1,385评论 4 12
  • 连续一个多月没尝试过葛优躺了…… 最开心的事莫过于下班回家褪去正装,来个舒服的葛大爷躺……
    爱菲8023阅读 186评论 0 0