kafka快速的原因

kafka是大数据领域无处不在的消息中间件,目前广泛使用的企业内部的实时数据管道,并帮助企业构建自己的流计算应用程序。
kafka虽然是基于磁盘做的数据存储,但却具有高性能、高吞吐、低延时的特点,器吞吐量动辄几万,几十上百万,这其中的原由值得我们一探究竟。
1、顺序读写
磁盘顺序读写性能要高于内存的随机读写
众所周知kafka是将消息记录持久化到本地磁盘中的,一般人会认为磁盘读写性能差,可能会对kafka性能如何保证提出质疑。实际上不管是内存还是磁盘,快或慢关键在于寻址的方式,磁盘分为顺序读写与随机读写,内存也一样分为顺序读写与随机读写。基于磁盘的随机读写确实很慢,但磁盘的顺序读写性能却很高,一般而言要高出磁盘随机读写三个数量级,一些情况下磁盘顺序读写性能甚至要高于内存随机读写。
磁盘的顺序读写是磁盘使用模式中最有规律的,并且操作系统也对这种模式做了大量优化,kafka就是使用了磁盘顺序读写来提升的性能。kafka的message是不断追加到本地磁盘文件末尾的,而不是随机的写入,这使得kafka写入吞吐量得到了显著提升
2、page cache
为了优化读写性能,kafka利用了操作系统本身的page cache,就是利用操作系统自身的内存而不是JVM空间内存。这样做的好处有:
(1)避免object消耗:如果是使用java堆,java对象的内存消耗比较大,通常是所存储数据的两倍甚至更多。
(2)避免GC问题:随着JVm数据不断增多,垃圾回收将会变得复杂与缓慢,使用系统缓存就不会存在GC问题。
3、零拷贝(sendfile)
零拷贝并不是不需要拷贝,而是减少不必要的拷贝次数。通常是说在IO读写过程中。
kafka利用linux操作系统“零拷贝(zero-copy)"机制在消费端做的优化。
首先来了解下数据从文件发送到socket网络连接中的常规传输路径
比如:读取文件,再用socket发送出去
传统方式实现:
先读取、再发送,实际经过1~4四次copy。
buffer=File.read
Socket.send(buffer)
*第一步:操作系统从磁盘读取数据到内核空间(kernel space)的Page Cache缓冲区
*第二步;应用程序读取内核缓冲区的数据copy到用户空间(user space)的缓冲区
*第三步:应用程序将用户空间缓冲区的数据copy回内核空间到socket缓冲区
*第四步:操作系统将数据从socket缓冲区copy到网卡,由网卡进行网络传输

传统方式,读取磁盘文件并进行网络发送,经过的四次数据copy是非常繁琐的。实际IO读写,需要进行IO中断,需要CPU响应中断(带来上下文切换),尽管后来引入DMA来接管CPU的中断请求,但四次copy是存在“不必要的拷贝”的。
重新思考传统IO方式,会注意到实际上并不需要第二个和第三个数据副本。应用程序除了缓存数据并将其传输回套接字缓冲区之外什么都不做。相反,数据可以直接从读缓冲区传输到套接字缓冲区。
显然,第二次和第三次数据copy其实在这种场景下没有什么帮助反而带来开销,这也正是零拷贝出现的意义。
这种场景:是指读取磁盘文件后,不需要做其他处理,直接用网络发送出去。试想,如果读取磁盘的数据需要用程序进一步处理的话,必须要经过第二次和第三次数据copy,让应用程序在内存缓冲区处理。
此时我们会发现用户态“空空如也”。数据没有来到用户态,而是直接在核心态就进行了传输,但这样依然还是有多次复制。首先数据被读取到read buffer中,然后发到socket buffer,最后才发到网卡。虽然减少了用户态和核心态的切换,但依然存在多次数据复制。
如果可以进一步减少数据复制的次数,甚至没有数据复制是不是就会做到最快呢?
DMA
DMA,全称叫Direct Memory Access,一种可让某些硬件子系统去直接访问系统主内存,而不用依赖CPU的计算机系统的功能。听着是不是很厉害,跳过CPU,直接访问主内存。传统的内存访问都需要通过CPU的调度来完成。如下图:

DMS,则可以绕过CPU,硬件自己去直接访问系统主内存。如下图

回到本文中的文件传输,有了DMA后,就可以实现绝对的零拷贝,因为网卡是直接去访问系统主内存的。如下图:
总结
kafka采用顺序读写、page cache、零拷贝以及分区分段等这些设计,再加上在索引方面做的优化,另外kafka数据读写也是批量的而不是单条的,使得kafka就有了高性能、高吞吐、低延时的特点。这样kafka提供大容量的磁盘存储也变成了一种优点
java的nio提供了filechannel,它的tarnsferto、transferfrom方法就是zero copy

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 202,723评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,080评论 2 379
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,604评论 0 335
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,440评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,431评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,499评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,893评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,541评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,751评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,547评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,619评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,320评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,890评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,896评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,137评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,796评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,335评论 2 342

推荐阅读更多精彩内容