目前的市面上的智能客服大多只能实现简单的一问一答对话,给人一种冰冷的感觉。人工智能技术的发展,使得机器人能够理解更多的信息,除了人们的话,还有人的情绪等,那么怎么让智能客服更有温度呢?
什么是智能客服的温度
人工坐席因为人交流、人精力的问题很难做到24H全天候服务,智能客服由于解析正确率,知识库维护的原因,导致服务效果不尽如人意。那么怎么去结合两者的优点,实现缺点互补,人智能客服替代人工坐席,为用户实现完美的服务呢?我觉得机器人的温度包括:
1.以解决问题为本
2.猜您所想,知您想问
3.机器人和用户一起成长
智能客服的答案
客服最主要的就是要解决用户的问题,优质的答案便是解决用户问题的前提。
个性化答案
目前的智能客服大多是采用配置的答案,这就导致了千人一面的现象。不同的用户询问一样的问题得到的答案是一样的,然后现实情况是很多问题由于用户的信息不一样,答案也是不一样的。例如:每个用户的花呗额度就是不一样的,用户咨询如何查询花呗额度时,如果只是单纯和用户说查询的步骤是不够的。因此好的客服是应该是能够根据用户情况给出个性化的答案的。
多级置信
智能客服是通过模型计算用户问句与库中问句的相似度给出结果的,所以就存在低置信的情况。那么如果机器人对结果不加判断就给出回答,就有可能闹出笑话。但是机器人本身是无法判断解析的结果是否正确,因此我们可以采用多级置信度对机器人的结果进行分级处理。当置信度达到一定时,我们认为结果完全正确,那么我们就直接给出结果;当置信值低于这个阈值,但是又不至于过低时,机器人则可以将解析结果进行反问,询问用户是否询问该问题;如果置信值低于一定时,机器人认为用户说的话无意义,机器人反问用户:“您说的话我没有理解,您可以简单重新描述下您的问题”。
智能客服的推荐
在智能客服中,推荐是极其重要的一环。它能够起到解析错误召回、完善问答链路、降低用户使用成本的作用。熟悉推荐系统的都知道推荐可以分为相关性推荐、预测推荐、生成式推荐。
相关性推荐
相关性是指机器人通过用户问句,在数据库中寻找和用户咨询的相关知识作为推荐。相关性推荐又可以分为知识点相关与问句相关,知识点相关即仅仅根据知识点进行推荐,这种情况一般用户用户咨询较粗的问题或者意图不清时,例如:用户仅仅说了花呗还款。另一种则是根据用户问句进行推荐,这种情况一般应用于用户意图明确的场景,
预测推荐
人会通过经验积累,了解不同的神情动作所包含的情绪,这便是察言观色。那么机器人如何察言观色,知你所想,猜你想问呢?机器人一般都是通过行为事件序列预测你想问的问题,因为询问同样问题的用户,那么他们的行为序列具有相似性,例如:A用户点击了转账,但是未转账成功,那么他进去智能客服时,大概率是询问转账失败的问题。机器人通过积累用户发问前的行为序列,便可以再下一次用户出现同样的行为序列时,直接给出提示。
生成式推荐
生成式推荐主要是解决推荐系统随着用户的使用,推荐的结果不断趋于单一的问题。因为随着用户使用数据的积累,关联问句的权重得到加强,这就会导致一些用户的特殊推荐需求得不到满足。另外就是有的推荐的问句反复出现在同一标准句下,但是用户一直没有点击操作时,就说明这个推荐用户认为与自己咨询的不相关。这会儿我们就可以利用生成式的推荐结果用来替换这部分问句,达到更好的推荐结果。生成式推荐就是根据一些用户的标签、或者历史问句,推荐一些跨度比较大的知识。例如:当用户咨询花呗相关的问题,用户也是潜在的借呗用户,那么我们就可以有针对性的推荐一些借呗的业务知识给用户。
成长型智能客服
一个好的智能客服一定是成长型的,能够通过用户的使用,慢慢记住用户的习惯于一些记录。并能够承担多种角色,除了答疑还能够帮助用户提醒、监控等。
问答历史记录
当用户第二次咨询同一个问题时,如果我们还只是和之前一样给出一个一样的答案,用户是不会有惊喜感的。就好比操作指南类的问题,第一次给用户的答案理想是描述清楚操作的方式,并且给出一个跳转的入口。但是当用户再次这么问时,那么可以认为用户知道了你这有快捷入口,那么你再累赘的和用户描述操作的流程,那么就是多余了。此时,我们可以直接合用户说,你要的XXX入口我们已经给你准备好了。如果你希望再进一步的话,甚至可以直接跳转过去。
提醒功能
助手也是智能机器人的一个重要角色,现在用户使用的APP众多,且互相存在授权,一个人往往很难记清楚在一个时间节点需要做什么事的,例如:话费充值、花呗还款、退货状态通知等。智能客服可以在提示用户这些时间节点需要做的事同时,给用户推荐一些相关知识。例如:
1.花呗还款提醒、理财产品到期通知、付费产品续费
2.早起资讯推送等
3....
结语
智能客服被大家寄予了厚望,人们期待它能够真正替代人工坐席,然后实际情况与理想还是存在很大的差距的。随着熟练机器人交互的一代成长,交互体验越来越好的机器人出现,智能客服的一定会迎来质的变化,实现真的行业颠覆性创新。
历史文章: