个人专题目录
背景
Disruptor是英国外汇交易公司LMAX开发的一个高性能队列,研发的初衷是解决内存队列的延迟问题(在性能测试中发现竟然与I/O操作处于同样的数量级)。基于Disruptor开发的系统单线程能支撑每秒600万订单,2010年在QCon演讲后,获得了业界关注。2011年,企业应用软件专家Martin Fowler专门撰写长文介绍。同年它还获得了Oracle官方的Duke大奖。
目前,包括Apache Storm、Camel、Log4j 2在内的很多知名项目都应用了Disruptor以获取高性能。在美团点评技术团队它也有不少应用,有的项目架构借鉴了它的设计机制。本文从实战角度剖析了Disruptor的实现原理。
需要特别指出的是,这里所说的队列是系统内部的内存队列,而不是Kafka这样的分布式队列。另外,本文所描述的Disruptor特性限于3.3.4。
Java内置队列
介绍Disruptor之前,我们先来看一看常用的线程安全的内置队列有什么问题。Java的内置队列如下表所示。
队列 | 有界性 | 锁 | 数据结构 |
---|---|---|---|
ArrayBlockingQueue | bounded | 加锁 | arraylist |
LinkedBlockingQueue | optionally-bounded | 加锁 | linkedlist |
ConcurrentLinkedQueue | unbounded | 无锁 | linkedlist |
LinkedTransferQueue | unbounded | 无锁 | linkedlist |
PriorityBlockingQueue | unbounded | 加锁 | heap |
DelayQueue | unbounded | 加锁 | heap |
队列的底层一般分成三种:数组、链表和堆。其中,堆一般情况下是为了实现带有优先级特性的队列,暂且不考虑。
我们就从数组和链表两种数据结构来看,基于数组线程安全的队列,比较典型的是ArrayBlockingQueue,它主要通过加锁的方式来保证线程安全;基于链表的线程安全队列分成LinkedBlockingQueue和ConcurrentLinkedQueue两大类,前者也通过锁的方式来实现线程安全,而后者以及上面表格中的LinkedTransferQueue都是通过原子变量compare and swap(以下简称“CAS”)这种不加锁的方式来实现的。
通过不加锁的方式实现的队列都是无界的(无法保证队列的长度在确定的范围内);而加锁的方式,可以实现有界队列。在稳定性要求特别高的系统中,为了防止生产者速度过快,导致内存溢出,只能选择有界队列;同时,为了减少Java的垃圾回收对系统性能的影响,会尽量选择array/heap格式的数据结构。这样筛选下来,符合条件的队列就只有ArrayBlockingQueue。
ArrayBlockingQueue的问题
ArrayBlockingQueue在实际使用过程中,会因为加锁和伪共享等出现严重的性能问题,我们下面来分析一下。
加锁
现实编程过程中,加锁通常会严重地影响性能。线程会因为竞争不到锁而被挂起,等锁被释放的时候,线程又会被恢复,这个过程中存在着很大的开销,并且通常会有较长时间的中断,因为当一个线程正在等待锁时,它不能做任何其他事情。如果一个线程在持有锁的情况下被延迟执行,例如发生了缺页错误、调度延迟或者其它类似情况,那么所有需要这个锁的线程都无法执行下去。如果被阻塞线程的优先级较高,而持有锁的线程优先级较低,就会发生优先级反转。
Disruptor论文中讲述了一个实验:
- 这个测试程序调用了一个函数,该函数会对一个64位的计数器循环自增5亿次。
- 机器环境:2.4G 6核
- 运算: 64位的计数器累加5亿次
Method | Time (ms) |
---|---|
Single thread | 300 |
Single thread with CAS | 5,700 |
Single thread with lock | 10,000 |
Single thread with volatile write | 4,700 |
Two threads with CAS | 30,000 |
Two threads with lock | 224,000 |
CAS操作比单线程无锁慢了1个数量级;有锁且多线程并发的情况下,速度比单线程无锁慢3个数量级。可见无锁速度最快。
单线程情况下,不加锁的性能 > CAS操作的性能 > 加锁的性能。
在多线程情况下,为了保证线程安全,必须使用CAS或锁,这种情况下,CAS的性能超过锁的性能,前者大约是后者的8倍。
综上可知,加锁的性能是最差的。
关于锁和CAS
保证线程安全一般分成两种方式:锁和原子变量。
锁
图1 通过加锁的方式实现线程安全
采取加锁的方式,默认线程会冲突,访问数据时,先加上锁再访问,访问之后再解锁。通过锁界定一个临界区,同时只有一个线程进入。如上图所示,Thread2访问Entry的时候,加了锁,Thread1就不能再执行访问Entry的代码,从而保证线程安全。
下面是ArrayBlockingQueue通过加锁的方式实现的offer方法,保证线程安全。
public boolean offer(E e) {
checkNotNull(e);
final ReentrantLock lock = this.lock;
lock.lock();
try {
if (count == items.length)
return false;
else {
insert(e);
return true;
}
} finally {
lock.unlock();
}
}
原子变量
原子变量能够保证原子性的操作,意思是某个任务在执行过程中,要么全部成功,要么全部失败回滚,恢复到执行之前的初态,不存在初态和成功之间的中间状态。例如CAS操作,要么比较并交换成功,要么比较并交换失败。由CPU保证原子性。
通过原子变量可以实现线程安全。执行某个任务的时候,先假定不会有冲突,若不发生冲突,则直接执行成功;当发生冲突的时候,则执行失败,回滚再重新操作,直到不发生冲突。
图2 通过原子变量CAS实现线程安全
如图所示,Thread1和Thread2都要把Entry加1。若不加锁,也不使用CAS,有可能Thread1取到了myValue=1,Thread2也取到了myValue=1,然后相加,Entry中的value值为2。这与预期不相符,我们预期的是Entry的值经过两次相加后等于3。
CAS会先把Entry现在的value跟线程当初读出的值相比较,若相同,则赋值;若不相同,则赋值执行失败。一般会通过while/for循环来重新执行,直到赋值成功。
代码示例是AtomicInteger的getAndAdd方法。CAS是CPU的一个指令,由CPU保证原子性。
/**
* Atomically adds the given value to the current value.
*
* @param delta the value to add
* @return the previous value
*/
public final int getAndAdd(int delta) {
for (;;) {
int current = get();
int next = current + delta;
if (compareAndSet(current, next))
return current;
}
}
/**
* Atomically sets the value to the given updated value
* if the current value {@code ==} the expected value.
*
* @param expect the expected value
* @param update the new value
* @return true if successful. False return indicates that
* the actual value was not equal to the expected value.
*/
public final boolean compareAndSet(int expect, int update) {
return unsafe.compareAndSwapInt(this, valueOffset, expect, update);
}
在高度竞争的情况下,锁的性能将超过原子变量的性能,但是更真实的竞争情况下,原子变量的性能将超过锁的性能。同时原子变量不会有死锁等活跃性问题。
伪共享
什么是共享
下图是计算的基本结构。L1、L2、L3分别表示一级缓存、二级缓存、三级缓存,越靠近CPU的缓存,速度越快,容量也越小。所以L1缓存很小但很快,并且紧靠着在使用它的CPU内核;L2大一些,也慢一些,并且仍然只能被一个单独的CPU核使用;L3更大、更慢,并且被单个插槽上的所有CPU核共享;最后是主存,由全部插槽上的所有CPU核共享。
图3 计算机CPU与缓存示意图
当CPU执行运算的时候,它先去L1查找所需的数据、再去L2、然后是L3,如果最后这些缓存中都没有,所需的数据就要去主内存拿。走得越远,运算耗费的时间就越长。所以如果你在做一些很频繁的事,你要尽量确保数据在L1缓存中。
另外,线程之间共享一份数据的时候,需要一个线程把数据写回主存,而另一个线程访问主存中相应的数据。