Geometric Brownian motion
Ornsten-Uhlenbeck process
我们可以这样理解:OU process分成两部分,第一部分(dt)的叫mean reversion,顾名思义就是过程在mean周边徘徊,diffusion(dWt)部分,就是最基本的布朗运动。
CIR模型认为,利率围绕一个平均值波动,如果利率偏离了平均值,它总是要回到平均值的。利率回到平均值的时间由模型中的调整速度描述。如果调整速度接近于1,利率将很快回到平均值。用△r表示利率的变化,r表示现行短期利率,R表示平均利率,a表示r的调整速度,δ表示期望值为0的误差项,可以得到基本的单因素模型公式如下:
xxx | 定义 |
---|---|
r(t) | 表示现行短期利率 |
R | 表示平均利率 |
- | represents the long run mean of the short-term interest rate |
κ | 表示r的调整速度 |
- | represents the speed of adjustment (or mean reversion) |
δ | 表示期望值为0的误差项 |
- | represents the long run mean of the short-term interest rate |
dZt | a small random increment in the Wiener process zt having mean 0 and variance dt. |
我们举个例子:
κ=0.1, r¯=0.03, σ=0.05, r(0)=0.01, all the parameters are annualized.
许多教科书都指出,当采样上述CIR过程时,避免负值的一种方法是 翻转随机正态随机数flip the sign of the random normal random number 的符号,如果它会在下一个模拟步骤中导致负r值。这使得r(t)= 0是一个反射边界。
Under this model, both the drift and the volatility change with the level of the short rate. The stochastic term has a standard deviation proportional to the square root of the current short rate. This implies that as the short rate increases, its standard deviation increases. As mentioned earlier this also means that the short rate under the CIR model will be strictly non-negative. As the short rate falls and approaches zero, the diffusion term (which contains the square root of the short rate) also approaches zero. In this case, the mean-reverting drift term dominates the diffusion term and pulls the short rate back towards its long-run mean. This prevents the short rate from falling below zero.
在这个模型下,the drift and the volatility 随着短期利率的变化而变化。
随机项具有与当前短期利率的平方根成比例的标准偏差。
这意味着随着短期利率的上涨,其标准差增加。
如前所述,这也意味着CIR模型下的短期利率将严格为非负。
随着短期利率下降并趋于零,扩散期(包含短期利率的平方根)也接近零。在这种情况下,均值回复drift项 dominates the diffusion term,并将短期收益率拉回长期均值。这可以防止短期利率跌破零。
The standard deviation factor, σ √ rt
avoids the possibility of negative interest rates for all positive values of κ and R . An interest rate of zero is also precluded if the condition
The Riccati Equation in Mathematical Finance
我这里想找出一个关于时间t的analytical expression of E[r(t)]
CIR 模型是一个取值非负的随机过程,0是它的反射边界。
因为,如果我们假设了 K >0 和 Xt 的长期均值是 a > 0 ,当