1 如何用自助法或刀切法估计偏差、方差?

1.1 Bootstrap自助法

有两种形式:非参数bootstrap和参数化的bootstrap,但基本思想都是模拟。
1)参数化的bootstrap假设总体的分布已知或总体的分布形式已知,可以由样本估计出分布参数,再从参数化的分布中进行再采样,类似于MC。
2)非参数化的bootstrap是从样本中再抽样,而不是从分布函数中进行再抽样。

——自助法估计统计量的偏差(非参数)

假设是我们的估计量为\theta,样本大小为N,从样本中有放回的再抽样N个样本,原来每一个样本被抽中的概率相同,均为1/N,得到新的样本我们称为Bootstrap样本,重复B次之后我们得到B个bootstrap样本集,在第i个样本集上都有对应的估计量\theta_i,对于B个,我们可以计算得到标准误,置信区间,偏置等。

1.2 刀切法

Jackknife(刀切法)是有Maurice Quenouille (1949)提出的一种再抽样方法,其原始动机是降低估计的偏差。Jackknife类似于“Leave one out”的交叉验证方法。令X=(X1,X2,…,Xn)为观测到的样本,定义第i个Jackknife样本为丢掉第i个样本后的剩余样本即

刀切法原理.png

由此生成的Jackknife样本集之间的差异很小,每两个Jackknife样本中只有两个单个的原始样本不同。

——Jackknife不适合的场合

统计函数不是平滑函数:数据小的变化会带来统计量的一个大的变化如极值、中值。如对数据X=(10,27,31,40,46,50,52,104,146)的中值得到的结果为48,48,48,48,45,43,43,43,43,偶数个数的中值为最中间两个数的平均值。

1.3 Jackknife与Bootstrap自助法的联系

Efron1979年文章指出了自助法与刀切法的关系。首先,自助法通过经验分布函数构建了自助法世界,将不适定的估计概率分布的问题转化为从给定样本集中重采样。第二,自助法可以解决不光滑参数的问题。遇到不光滑(Smooth)参数估计时,刀切法会失效,而自助法可以有效地给出中位数的估计。第三,将自助法估计用泰勒公式展开,可以得到刀切法是自助法方法的一阶近似。第四,对于线性统计量的估计方差这个问题,刀切法或者自助法会得到同样的结果。但在非线性统计量的方差估计问题上,刀切法严重依赖于统计量线性的拟合程度,所以远不如自助法有效。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容