2021-04-10 ch4模型泛化和过拟合

泛化和过拟合

构建泛化能力强的模型

  1. 正确的数据
  2. 合适的模型(图像:CNN)
  3. 合适的优化算法(梯度下降、adam)
  4. 避免模型过拟合

过拟合:训练集上拟合好,但在测试集上表现差
通常,一个模型存在过拟合现象的时候,它的参数趋向于变大。

L1和L2正则
由于使用L1正则之后,很多参数变成了0,这自然就起到了特征选择的目的。让模型的参数变稀疏。
L1正则所存在的潜在的问题:
1、计算上的挑战 无法很好地融合到梯度下降法,对于||w||, w=0时,0点没有梯度。
2、特征选择上的挑战。 对于相似特征上,是随机筛选。解决方法可以是结合L1+L2 。在成千上万个特征选某几个时会用L1.

关于L2参数λ:绝对值变大的时候,L2范数的值也会相应地变大,这就跟最小化目标函数是矛盾的。所以加入L2范数之后,优化过程倾向于选择绝对值小的参数

image.png


MAP 和 MLP

最大似然估计(MLE, Maximum Likelihood Estimation)和最大后验估计 MAP之间也有着特殊的关系:当数据量无穷多的时候,最大后验估计的结果会逼近于最大似然估计的结果。这就说明,当数据越来越多的时候,先验的作用会逐步减弱。

MLE 寻找θ使得 P(D|θ) 最大
MAP 寻找θ使得 P(θ|D) 最大


image.png

θ_MAP = argmax P(D|θ)·P(θ) 似然概率·先验概率


image.png

当样本量很小的时候,应加入先验概率,否则容易被样本迷惑,参考癌症看病的例子 4-4 PART1。同时也相当于一个正则项,不同先验概率分布相当于不同正则项,比如高斯分布=L2正则。

参数服从高斯分布=L2正则

参数服从拉普拉斯分布=L1正则

当样本量无穷大时,MAP趋向于MLP。因为MLE部分权重随N变大而变大,prior权重相应变小


image.png
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容

  • 1. 最小二乘法(Least squares) 最小二乘法是一种数学优化技术,它通过最小化误差的平方来寻找数据的最...
    Deepool阅读 7,911评论 0 26
  • (1)什么是正则化 1、从结构风险化角度,解释什么是正则化 经验风险其实就是样本本身带来的误差。结构风险就是学习器...
    只为此心无垠阅读 2,175评论 0 2
  • 一. 数学基础 1. 最大似然估计,最大后验概率、贝叶斯估计 参考: https://blog.csdn.net/...
    木木xixi1997阅读 1,457评论 0 1
  • 接触机器学习时间也不短了, 趁国庆放假, 做一下深度整理. 1. 大纲 若想在企业胜任算法相关岗位知识, 除了掌握...
    婉妃阅读 3,393评论 2 92
  • 一、标准神经网络与贝叶斯神经网络 通过优化的标准神经网络训练(从概率的角度来看)等同于权重的最大似然估计(MLE)...
    申申申申申申阅读 11,307评论 0 5