Adaptive Query Exection(自适应查询计划)简称AQE,在最早在spark 1.6版本就已经有了AQE;到了spark 2.x版本,intel大数据团队进行了相应的原型开发和实践;到了spark 3.0时代,AQE终于面向用户可以使用了
注:以下代码分析基于Spark3.0.1版本
1 Join的自适应数据倾斜处理
代码位于sql.core模块的org.apache.spark.sql.execution.adaptive.OptimizeSkewedJoin
主要原理就是基于需要进行join的两个RDD的每个partition信息,将数据量倾斜的分区进行切分出来再Join。
首先,是否能进行倾斜优化,有几点硬性要求:
- 必须是SortMergeJoin
- 必须是[Inner,Cross,LeftSemi,LeftAnti,LeftOuter,RightOuter]中的一种Join
- left表:Inner,Cross,LeftSemi,LeftAnti,LeftOuter
- right表:Inner,Cross,RightOuter
- left和right的分区数必须一致(这个只要不是异常情况一定可以保证,sortMergeJoin在Mapper端会确保左右两个rdd的partition函数一致,生成的分区数也一定是一致的)
主要流程为:
1.1 计算优化后的partition大小
根据left或right所有partition的数据分布情况,分别计算出left和right在优化后的partition大小
调用targetSize方法,sizes是每个partition的bytes大小,medianSize表示整个rdd中partition大小的中位数。
变量advisorySize通过spark.sql.adaptive.advisoryPartitionSizeInBytes设置,表示优化后的partition标准大小,默认64MB。
private def targetSize(sizes: Seq[Long], medianSize: Long): Long = {
val advisorySize = conf.getConf(SQLConf.ADVISORY_PARTITION_SIZE_IN_BYTES)
val nonSkewSizes = sizes.filterNot(isSkewed(_, medianSize))
// It's impossible that all the partitions are skewed, as we use median size to define skew.
assert(nonSkewSizes.nonEmpty) #要求必须有不倾斜的分片数
math.max(advisorySize, nonSkewSizes.sum / nonSkewSizes.length)
}
首先通过调用isSkewed方法来过滤出不倾斜的分片,之后取advisorySize和整个分片的平均值大小作为优化后的分片大小,所以说targetSize也不一定就是我们设置的spark.sql.adaptive.advisoryPartitionSizeInBytes大小。
private def isSkewed(size: Long, medianSize: Long): Boolean = {
size > medianSize * conf.getConf(SQLConf.SKEW_JOIN_SKEWED_PARTITION_FACTOR) &&
size > conf.getConf(SQLConf.SKEW_JOIN_SKEWED_PARTITION_THRESHOLD)
}
isSkewed用来判断一个分片是否倾斜,当前分片必须满足大小大于medianSize*spark.sql.adaptive.skewJoin.skewedPartitionFactor(默认5),并且size>spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes(默认256MB)。medianSize表示所有partition的中位数大小。
1.2 判断partition是否进行倾斜处理
首先判断partition是否可切分,left的一个分片为例
val isLeftSkew = isSkewed(leftActualSizes(partitionIndex), leftMedSize) && canSplitLeft
直接调用isSkewed,canSplitLeft表示left是否满足[Inner,Cross,LeftSemi,LeftAnti,LeftOuter]中的一种Join类型。right表判断同理。
然后需要判断一个partition是否是经过coalesce操作的:
val isLeftCoalesced = leftPartSpec.startReducerIndex + 1 < leftPartSpec.endReducerIndex
如果一个partition需要读取的reduceId>=2个,那么认为这个Partition经过AQE的coalesce操作,Spark3.0.1版本对于这种情况不再考虑倾斜处理。
1.3 partition的切分操作
以left的一个分区为例,必须满足isLeftSkew && !isLeftCoalesced才会进行split分区操作,否则返回leftPartSpec(原始的分区规则)。
// A skewed partition should never be coalesced, but skip it here just to be safe.
val leftParts:Seq[CoalescedPartitionSpec] = if (isLeftSkew && !isLeftCoalesced) {//倾斜 &非coalesc才进行自适应分区
val reducerId = leftPartSpec.startReducerIndex
val skewSpecs:Option[Seq[PartialReducerPartitionSpec]] = createSkewPartitionSpecs(left.mapStats.shuffleId, reducerId, leftTargetSize)
if (skewSpecs.isDefined) {
logDebug(s"Left side partition $partitionIndex is skewed, split it into " +
s"${skewSpecs.get.length} parts.")
leftSkewDesc.addPartitionSize(leftActualSizes(partitionIndex))
}
skewSpecs.getOrElse(Seq(leftPartSpec))
} else {
Seq(leftPartSpec)
}
首先会调用createSkewPartitionSpecs函数来进行尝试split处理,如果返回Some表示能进行split,将该分区的大小add到leftSkewDesc,用于统计AQE信息。之后返回当前分区信息,如果skewSpecs=None,那么返回Seq长度为1的原始分区规则。
/**
* Splits the skewed partition based on the map size and the target partition size
* after split, and create a list of `PartialMapperPartitionSpec`. Returns None if can't split.
* 为什么这里代码看起来像是做合并呢,因为mapPartitionSizes对应一个reducePart在上游需要读取的part分区,但是这里将其合并为多个子分区,
* 每个子分区在AQE之后,都会单独启动一个分区;
* 合并分片:[0,1,2,3,4,5]->[Part[0,3],Part[3,5]]
*/
private def createSkewPartitionSpecs(
shuffleId: Int,
reducerId: Int,
targetSize: Long): Option[Seq[PartialReducerPartitionSpec]] = {
val mapPartitionSizes:Array[Long] = getMapSizesForReduceId(shuffleId, reducerId) //获取每个分区的字节数
// 尝试进行分区合并:比如[0,1,2,3,4,5]->[0,3,5],012合并为一个分片,34合并为一个分片
val mapStartIndices:Array[Int] = ShufflePartitionsUtil.splitSizeListByTargetSize(mapPartitionSizes, targetSize)
if (mapStartIndices.length > 1) { //如果合并后的分区数大于1个,则转换为合并后的partitions,分别对应了mapstatus中的起始和结束索引
//mapStartIndices.sliding(2).map(t=>PartialReducerPartitionSpec(reducerId, t(0),t(1)))//这么写不是更好吗?
Some(mapStartIndices.indices.map { i =>
val startMapIndex = mapStartIndices(i)
val endMapIndex = if (i == mapStartIndices.length - 1) {
mapPartitionSizes.length
} else {
mapStartIndices(i + 1)
}
PartialReducerPartitionSpec(reducerId, startMapIndex, endMapIndex)
})
} else {//如果合并后只有一个索引,则不使用
None
}
}
判断一个split到底切分为多少片其实也是个费劲的过程。其中getMapSizesForReduceId这个方法需要解释一下,我们知道Shuffle过程中,上游的Mapper端生成数据后,是按照reduceId来排序的,并整体放在一个data文件中,同时生成一个索引文件。Reduce端可以根据索引文件中起始的reduceId来读取data中对应片段的数据,由于reduce端会依赖多个mapper,所以这个方法返回了一个Array[Long]类型,代表需要从对应mapId拉取的bytes大小,mapId就是对应数组下标。通过这个方法我们起其实也可以知道,通过shuffleId+reduceId即可知道当前reduce都需要拉取哪些数据了。
ShufflePartitionsUtil.splitSizeListByTargetSize我们这里不深入讲解,有兴趣的可以自己阅读源码。具体就是按照targetSize来将一个reduce中需要拉取的mapPartitionSizes切分为适合的大小,方法内部主要是一个循环函数,计算相邻的mapSize,是否能合并为targetSize的大小。最终返回mapStartIndices:Array[Int],表示哪些mapId放到一个task中进行处理,比如[0,3,5],0-1-2合并为一个分片,3-4合并为一个分片,而5单独处理。
之后的流程就比较简单了,如果split完的分片数大于1个,则获取这个分片需要读取的startMapIndex和endMapIndex,封装为PartialReducerPartitionSpec,这样,在实际计算的时候,通过shuffleId+reduceId+startMapIndex+endMapIndex就可以得到对应task需要拉取的数据了。
通过1.2和1.3的处理,可以分别将获取left和right切分后的part
1.4 分配另一半Partition
小标题表述不准确,想表示的是left的某个partition假如split为3份,那么right需要将对应的partition复制3份,分别和left经过split的分片做join。
代码很精简,双层for循环,相当于做了个笛卡尔积:
for {
leftSidePartition <- leftParts
rightSidePartition <- rightParts
} {
leftSidePartitions += leftSidePartition
rightSidePartitions += rightSidePartition
}
如果left和right都没有经过倾斜优化,那么这段代码中leftSidePartitions和rightSidePartitions分别只有各自原始的分区。看下面的例子,p1代表left或这right的index=1的分片。
如果left split为3份,那么leftSidePartitions=[p1_0,p1_1,p1_2],rightSidePartitions=[p1,p1,p1]。
如果left split为3份,right split为2份,那么leftSidePartitions=[p1_0,p1_0,p1_1,p1_1,p1_2,p1_2],rightSidePartitions=[p1_0,p1_1,p1_0,p1_1,p1_0,p1_1]。left将被fetch和处理2次,而right是3次。
是不是看到了什么缺点?
1.5 更新Join计划
新的执行计划建立在left或right有经过倾斜优化的分区,smj代表SortMergeJoin,将优化后的分区规则更新到执行计划中即可。
if (leftSkewDesc.numPartitions > 0 || rightSkewDesc.numPartitions > 0) {
val newLeft = CustomShuffleReaderExec(
left.shuffleStage, leftSidePartitions, leftSkewDesc.toString)
val newRight = CustomShuffleReaderExec(
right.shuffleStage, rightSidePartitions, rightSkewDesc.toString)
smj.copy(
left = s1.copy(child = newLeft), right = s2.copy(child = newRight), isSkewJoin = true)
} else {
smj
}
2 补充
贴上optimizeSkewJoin的核心方法,推荐大家看看源代码:
/*
* This method aim to optimize the skewed join with the following steps:
* 1. Check whether the shuffle partition is skewed based on the median size
* and the skewed partition threshold in origin smj.
* 2. Assuming partition0 is skewed in left side, and it has 5 mappers (Map0, Map1...Map4).
* And we may split the 5 Mappers into 3 mapper ranges [(Map0, Map1), (Map2, Map3), (Map4)]
* based on the map size and the max split number.
* 3. Wrap the join left child with a special shuffle reader that reads each mapper range with one
* task, so total 3 tasks.
* 4. Wrap the join right child with a special shuffle reader that reads partition0 3 times by
* 3 tasks separately.
*/
def optimizeSkewJoin(plan: SparkPlan): SparkPlan = plan.transformUp {
case smj @ SortMergeJoinExec(_, _, joinType, _,
s1 @ SortExec(_, _, ShuffleStage(left: ShuffleStageInfo), _),
s2 @ SortExec(_, _, ShuffleStage(right: ShuffleStageInfo), _), _)
if supportedJoinTypes.contains(joinType) =>
// 要求left和right分片数必须相同,这在sortMergeJoin中是可以实现的
assert(left.partitionsWithSizes.length == right.partitionsWithSizes.length)
val numPartitions = left.partitionsWithSizes.length
// 获取两个rdd的所有part的bytes大小的中位数
// Use the median size of the actual (coalesced) partition sizes to detect skewed partitions.
val leftMedSize = medianSize(left.partitionsWithSizes.map(_._2))
val rightMedSize = medianSize(right.partitionsWithSizes.map(_._2))
logDebug(
s"""
|Optimizing skewed join.
|Left side partitions size info:
|${getSizeInfo(leftMedSize, left.partitionsWithSizes.map(_._2))}
|Right side partitions size info:
|${getSizeInfo(rightMedSize, right.partitionsWithSizes.map(_._2))}
""".stripMargin)
// 是否可以切分:满足一定的join条件
val canSplitLeft = canSplitLeftSide(joinType)
val canSplitRight = canSplitRightSide(joinType)
// We use the actual partition sizes (may be coalesced) to calculate target size, so that
// the final data distribution is even (coalesced partitions + split partitions).
// 分别对两个rdd的每个partition进行数据倾斜优化后的大小
val leftActualSizes = left.partitionsWithSizes.map(_._2)
val rightActualSizes = right.partitionsWithSizes.map(_._2)
val leftTargetSize = targetSize(leftActualSizes, leftMedSize)
val rightTargetSize = targetSize(rightActualSizes, rightMedSize)
val leftSidePartitions = mutable.ArrayBuffer.empty[ShufflePartitionSpec]
val rightSidePartitions = mutable.ArrayBuffer.empty[ShufflePartitionSpec]
val leftSkewDesc = new SkewDesc
val rightSkewDesc = new SkewDesc
// 遍历所有partition,进行合并或者切分
for (partitionIndex <- 0 until numPartitions) {
/** 遍历每个part,如果是倾斜,就按照map端分区的index进行split,子分区不会超过targetSize*1.2的大小
* 左右rdd都需要执行这样的操作,
* */
//是否倾斜及是否可切分
val isLeftSkew = isSkewed(leftActualSizes(partitionIndex), leftMedSize) && canSplitLeft
val leftPartSpec:CoalescedPartitionSpec = left.partitionsWithSizes(partitionIndex)._1
//如果一个分片是经过coalesc操作的,那么他的startIndex+1 != endIndex也就是至少读取两个分片
val isLeftCoalesced = leftPartSpec.startReducerIndex + 1 < leftPartSpec.endReducerIndex
val isRightSkew = isSkewed(rightActualSizes(partitionIndex), rightMedSize) && canSplitRight
val rightPartSpec = right.partitionsWithSizes(partitionIndex)._1
val isRightCoalesced = rightPartSpec.startReducerIndex + 1 < rightPartSpec.endReducerIndex
// A skewed partition should never be coalesced, but skip it here just to be safe.
val leftParts = if (isLeftSkew && !isLeftCoalesced) {//倾斜 &非coalesc才进行自适应分区
val reducerId = leftPartSpec.startReducerIndex
val skewSpecs:Option[Seq[PartialReducerPartitionSpec]] = createSkewPartitionSpecs(left.mapStats.shuffleId, reducerId, leftTargetSize)
if (skewSpecs.isDefined) {
logDebug(s"Left side partition $partitionIndex is skewed, split it into " +
s"${skewSpecs.get.length} parts.")
leftSkewDesc.addPartitionSize(leftActualSizes(partitionIndex))
}
skewSpecs.getOrElse(Seq(leftPartSpec))
} else {
Seq(leftPartSpec)
}
// A skewed partition should never be coalesced, but skip it here just to be safe.
val rightParts:Seq[CoalescedPartitionSpec] = if (isRightSkew && !isRightCoalesced) {
val reducerId = rightPartSpec.startReducerIndex
val skewSpecs :Option[Seq[PartialReducerPartitionSpec]]= createSkewPartitionSpecs(
right.mapStats.shuffleId, reducerId, rightTargetSize)
if (skewSpecs.isDefined) {
logDebug(s"Right side partition $partitionIndex is skewed, split it into " +
s"${skewSpecs.get.length} parts.")
rightSkewDesc.addPartitionSize(rightActualSizes(partitionIndex))
}
skewSpecs.getOrElse(Seq(rightPartSpec))
} else {
Seq(rightPartSpec)
}
/** 这里做了一个笛卡尔积操作:
* leftParts和rightParts分别存放了经过split的分区或未经过split的分区
* 1 left right都没有skew:则结果各自只有一个SidePartition
* 2 left.skew right.notskew:rightSidePartition会将相同的part进行复制(left.skew切分的part数量)
* 3 left.notSkew +right.skew:leftSidePartition会将相同的part进行复制(right.skew切分的part数量)
* 4 left.skew+right.skew: 笛卡尔积,若left有3个part,right有2个part,那么left每个part会复制2份,right每个part复制3份
* */
for {
leftSidePartition <- leftParts
rightSidePartition <- rightParts
} {
leftSidePartitions += leftSidePartition
rightSidePartitions += rightSidePartition
}
}
logDebug("number of skewed partitions: " +
s"left ${leftSkewDesc.numPartitions}, right ${rightSkewDesc.numPartitions}")
//修改经过自适应的join计划
if (leftSkewDesc.numPartitions > 0 || rightSkewDesc.numPartitions > 0) {
val newLeft = CustomShuffleReaderExec(
left.shuffleStage, leftSidePartitions, leftSkewDesc.toString)
val newRight = CustomShuffleReaderExec(
right.shuffleStage, rightSidePartitions, rightSkewDesc.toString)
smj.copy(
left = s1.copy(child = newLeft), right = s2.copy(child = newRight), isSkewJoin = true)
} else {
smj
}
}
其实整体看下来,逻辑不是那么的复杂。自适应倾斜Join优化并没有使用我们熟知的分配随机前缀Key来进行,可能是需要进行二次Join引入的复杂度无法预料,所以这里采用split分片,进行partition级别笛卡尔积的操作,这可能会导致数据传输量变大的问题,但是整体来说还是比较可控的。