AI生成文档?代码有用,领域知识为王

今天想分享一下最近在团队讨论中关于生成式AI能否帮助生成技术/业务文档,提高工作效率的思考。纯属个人观点,希望对你有所启发。

背景

起因是我们在处理一个遗留系统项目时,遇到文档不完整、格式混乱的情况。这个项目已经转手多个外包团队,很多文档是在项目交付后匆忙编写的,导致了各种问题:文档过时、不规范,甚至丢失。而我们的团队接手后,通常只有1到3个月的时间熟悉项目并独立维护。而外包团队在交接后往往解散,一旦交接不充分,就很难再找到相关人员。

更复杂的是,不同项目的技术栈各异,导致团队成员需要快速掌握多种技术和业务知识,这大大增加了学习成本。

期待

团队希望通过生成式AI,结合源代码和现有的技术/业务文档(无论是否最新),构建一个知识库。这不仅能帮助团队迅速生成项目的整体概况,了解项目的“前世今生”,还能像一个虚拟专家,解答团队在项目中的各种问题——无论是业务逻辑、技术架构还是数据库设计等方面。即便老团队撤出,AI也能成为对项目了如指掌的“人”。

挑战

最初我们设想使用GPT-4o或Llama3.1等生成式AI,通过RAG(检索增强生成)技术构建一个本地知识库,满足上述需求。然而,冷静分析后,我们意识到一些不可忽视的问题:

  1. 生成式AI虽然有强大的通用知识储备,但对于特定项目的领域知识,依赖的是输入数据。而这些数据往往是过往外包团队留下的质量参差不齐的文档。
  2. 如果这些文档中包含过时或错误的信息,AI基于此生成的内容也会不准确。

所以,如果AI的基础数据不可靠,我们又怎能期望它生成出正确的文档呢?

代码与文档

基于以上挑战,我们意识到:源代码是项目的核心数据资产,虽然其他文档可能过时或不准确,但代码始终能反映项目的现状。因此,AI可以通过解析代码来生成代码逻辑的解释,这在技术层面是可行且较为准确的。

但要注意,代码只能描述实现逻辑,无法直接推导出原始的业务需求。原因如下:

  • 代码是开发人员对业务需求的抽象,而这个过程往往伴随信息丢失或理解偏差,这也是Bug产生的主要原因之一。
  • 因为代码是一种多对一的抽象,同一个业务需求可能有多种实现方式,无法从代码反向推导出原始需求。

尽管这些问题可以通过技术手段逐步解决,但我的核心思考是:人和领域知识的重要性。经历过产品或者项目的人,头脑中的知识比文字形式的文档更有生动,更有意义。AI只能作为辅助工具,而业务创新仍然依赖于人类的思考与理解。AI目前还不具备这种创新能力。

反向思考:代码即业务文档?

如果代码能更好地反映业务领域知识,而不是仅仅是技术抽象,那么代码本身或许也可以成为一种业务文档——活文档。这种情况下,AI生成业务文档的可能性将大大提升。如果代码能够一对一地映射业务需求,业务文档的生成将变得更加可行。
如何能够实现上面的这一点呢? 一个20年前的建模方法或许能够帮上忙,那就是领域驱动设计(DDD)。这里就不再赘述,感兴趣的小伙伴可以自行查找。不过有一点可以高度概括DDD希望实现的目标:业务需求、模型、代码三者1比1的反应彼此。那么代码就可以1:1的反应业务需求,本身就是一个业务文档了。

最后

无论你是谁,我希望你可以思考:

  • 作为开发人员,你的代码能否真实反映业务领域?而不是你自己的抽象。
  • 作为AI开发者,你的数据是否准确,足够支持你的应用需求?
  • 作为业务人员,AI是你的伙伴,而你的竞争力在于脑中的领域知识,这是AI无法替代的。你的竞争力是什么?

践行敏捷实践,让工作变得更美好。欢迎在留言区留言,交流落地经验。
欢迎关注我的个人博客

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,445评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,889评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,047评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,760评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,745评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,638评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,011评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,669评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,923评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,655评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,740评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,406评论 4 320
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,995评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,961评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,023评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,483评论 2 342

推荐阅读更多精彩内容