优化算法要点

权重初始化

image.png

梯度下降优化:

假设有m个样本,如果m很大的话,处理速度就很慢。比如说,如果是500万或5000万或者更大的一个数,在对整个训练集执行梯度下降法时,你要做的是,你必须处理整个训练集,然后才能进行一步梯度下降法,然后你需要再重新处理500万个训练样本,才能进行下一步梯度下降法。
我们可以将500万个样本分为5000个组,每组1000个样本数据,每次对这1000个样本进行训练,然后执行梯度下降法,循环5000次,就是一个epoch,也就是说一个epoch是指把所有训练数据完整的过一遍。

如果训练集较小,直接使用batch梯度下降法,样本集较小就没必要使用mini-batch梯度下降法,你可以快速处理整个训练集,所以使用batch梯度下降法也很好,这里的少是说小于2000个样本,这样比较适合使用batch梯度下降法。不然,样本数目较大的话,一般的mini-batch大小为64到512,考虑到电脑内存设置和使用的方式,如果mini-batch大小是2的次方,代码会运行地快一些,64就是2的6次方,以此类推,128是2的7次方,256是2的8次方,512是2的9次方。所以我经常把mini-batch大小设成2的次方。在上一个视频里,我的mini-batch大小设为了1000,建议你可以试一下1024,也就是2的10次方。也有mini-batch的大小为1024,不过比较少见,64到512的mini-batch比较常见。

学习率衰减(learn-rate)

所以慢慢减少的本质在于,在学习初期,你能承受较大的步伐,但当开始收敛的时候,小一些的学习率能让你步伐小一些。

学习率衰减.png

decay-rate称为衰减率(这是需要调的超参),epoch-num为代数,为初始学习率
除此之外还有一些其它的衰减算法
这里的超参调整不是我们关注的要点

我们不太可能困在极差的局部最优中,条件是我们在训练较大的神经网络,存在大量参数,并且成本函数被定义在较高的维度空间。

第二点,平稳段是一个问题,这样使得学习十分缓慢,这也是像Momentum或是RMSprop,Adam这样的算法,能够加速学习算法的地方。在这些情况下,更成熟的优化算法,如Adam算法,能够加快速度,尽早往下走出平稳段。

结果证实一些超参数比其它的更为重要,我认为,最为广泛的学习应用是,学习速率α是需要调试的最重要的超参数

除了,还有一些参数需要调试,例如Momentum参数,0.9就是个很好的默认值。我还会调试mini-batch的大小,以确保最优算法运行有效。我还会经常调试隐藏单元,这三个是我觉得其次比较重要的,相对于而言。重要性排第三位的是其他因素,层数有时会产生很大的影响,学习率衰减也是如此。当应用Adam算法时,事实上,我从不调试β1,β2和ε,我总是选定其分别为0.9,0.999和10的-8次方。

Batch归一化操作

之前我们对输入特征X进行了归一化处理,对任何一个隐藏层而言,a也可以进行归一化处理,这里并不是直接对a进行归一化处理,而是对z进行归一化处理,类似于对w和b,减去平均值再除以方差。

在TensorFlow框架中,在dense层之后,激活层之前,加
model.add(tf.keras.layers.BatchNormalization())进行batch归一化操作

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容

  • 总是能从奇怪的地方找到难得的正能量 钱还没花完人不能死 可是我也没有时间去花钱 我的梦想都太费钱了 抠门小达人 可...
    小仙鹅爱吃擀面皮阅读 305评论 1 0
  • 读完本文约需47分钟 各位书友,大家好。 我们曾经说过,怎么样读老子的《道德经》。其实老子有两个非常好的学生,真正...
    绿叶zll阅读 571评论 0 0
  • *选择大于努力,因为前者的回报更高 很长一段时间以来,对上面的结论,我都在自我说服,让自己打心底相信它是真的,然后...
    念即起行阅读 153评论 0 0
  • 没精神的话 瞪大眼睛就可以啦 在韩国的时候 身边的人没怎么有会搞关系的人,遇到了这样的人有点瞧不起他们可是回国了 ...
    sooooim阅读 196评论 0 0
  • 听昨日考研动员大会所感 讲课老师之口才 那不一般 开始就让我跟上了他的思维 让我考研之心更加笃定 那是激情澎湃 想...
    心境q阅读 102评论 0 0