2018-08-06 建造我们的第一个神经网络

一、添加层add_layer

  在 Tensorflow 里定义一个添加层的函数可以很容易的添加神经层,为之后的添加省下不少时间。神经层里常见的参数通常有weights、biases和激励函数。
  定义添加神经层的函数def add_layer(),它有四个参数:输入值、输入的大小、输出的大小和激励函数,我们设定默认的激励函数是None。

def add_layer(inputs, in_size, out_size, activation_function=None):

  接下来是weights和biases。
  因为在生成初始参数时,随机变量(normal distribution)会比全部为0要好很多,所以我们这里的weights为一个in_size行, out_size列的随机变量矩阵。

Weights = tf.Variable(tf.random_normal([in_size, out_size]))

  在机器学习中,biases的推荐值不为0,所以我们这里是在0向量的基础上又加了0.1。

biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)

  下面,我们定义xW_plus_b, 即神经网络未激活的值。其中,tf.matmul()是矩阵的乘法。

xW_plus_b= tf.matmul(inputs, Weights) + biases

  当activation_function——激励函数为None时,输出就是当前的预测值——xW_plus_b,不为None时,就把Wx_plus_b传到activation_function()函数中得到输出。

if activation_function is None:
        outputs = xW_plus_b
    else:
        outputs = activation_function(xW_plus_b)

return outputs

参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/3-1-add-layer/

二、建造神经网络

  1. 导入数据
      这里的x_data和y_data并不是严格的一元二次函数的关系,因为我们多加了一个noise,这样看起来会更像真实情况。
x_data = np.linspace(-1,1,300, dtype=np.float32)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape).astype(np.float32)
y_data = np.square(x_data) - 0.5 + noise

  利用占位符定义我们所需的神经网络的输入。 tf.placeholder()就是代表占位符,这里的None代表无论输入有多少都可以,因为输入只有一个特征,所以这里是1。

xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

  接下来就可以开始定义神经层了。 通常神经层都包括输入层、隐藏层和输出层。这里的输入层只有一个属性, 所以我们就只有一个输入;隐藏层我们可以自己假设,这里我们假设隐藏层有10个神经元; 输出层和输入层的结构是一样的,所以我们的输出层也是只有一层。 所以,我们构建的是——输入层1个、隐藏层10个、输出层1个的神经网络。
  利用之前的add_layer()函数定义隐藏层,这里使用 Tensorflow 自带的激励函数tf.nn.relu。

l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)

  接着,定义输出层。此时的输入就是隐藏层的输出——l1,输入有10个神经元(隐藏层的输出层),输出有1个神经元。

prediction = add_layer(l1, 10, 1, activation_function=None)

  计算预测值prediction和真实值的误差,对二者差的平方取平均。

loss = tf.reduce_mean(tf.square(ys - prediction),
                     reduction_indices=[1])

  接下来,是很关键的一步,如何让机器学习提升它的准确率。tf.train.GradientDescentOptimizer()中的值通常都小于1,这里取的是0.1,代表以0.1的效率来最小化误差loss。

train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

  定义Session,并用 Session 来执行初始化步骤。 (注意:在tensorflow中,只有session.run()才会执行我们定义的运算。)

init = tf.global_variables_initializer()
sess = tf.Session()
sess.run(init)
for i in range(1000):
    # training
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        # to see the step improvement
        print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))

参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/3-2-create-NN/

三、结果可视化

  构建图形,用散点图描述真实数据之间的关系。 (注意:这里是直接在前面的基础上写的代码,需要from matplot import pyplot as plt,plt.ion()表示开启交互模式,用于连续显示。)

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion() #本次运行请注释,全局运行不要注释
plt.show()

  接下来,我们来显示预测数据。每隔50次训练刷新一次图形,用红色、宽度为5的线来显示我们的预测数据和输入之间的关系,并暂停0.1s。

for i in range(1000):
    # training
    sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
    if i % 50 == 0:
        # to visualize the result and improvement
        try:
            ax.lines.remove(lines[0])
        except Exception:
            pass
        prediction_value = sess.run(prediction, feed_dict={xs: x_data})
        # plot the prediction
        lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
        plt.pause(0.1)

参考链接:https://morvanzhou.github.io/tutorials/machine-learning/tensorflow/3-3-visualize-result/

四、优化器

  Tensorflow 中的优化器会有很多不同的种类。最基本, 也是最常用的一种就是GradientDescentOptimizer。一般比较常用的是MomentumOptimizer和AdamOptimizer。另外,Alpha Go使用的优化器是RMSPropOptimizer。


https://www.tensorflow.org/versions/r0.11/api_docs/python/train.html
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,098评论 5 476
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,213评论 2 380
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 149,960评论 0 336
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,519评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,512评论 5 364
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,533评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,914评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,574评论 0 256
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,804评论 1 296
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,563评论 2 319
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,644评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,350评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,933评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,908评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,146评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 42,847评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,361评论 2 342

推荐阅读更多精彩内容