elasticsearch实现基于拼音搜索

1、背景

一般情况下,有些搜索需求是需要根据拼音中文来搜索的,那么在elasticsearch中是如何来实现基于拼音来搜索的呢?可以通过elasticsearch-analysis-pinyin分析器来实现。

2、安装拼音分词器

# 进入 es 的插件目录
cd /usr/local/es/elasticsearch-8.4.3/plugins
# 下载
wget https://github.com/medcl/elasticsearch-analysis-pinyin/releases/download/v8.4.3/elasticsearch-analysis-pinyin-8.4.3.zip
# 新建目录
mkdir analysis-pinyin
# 解压
mv elasticsearch-analysis-pinyin-8.4.3.zip analysis-pinyin && cd analysis-pinyin && unzip elasticsearch-analysis-pinyin-8.4.3.zip && rm -rvf elasticsearch-analysis-pinyin-8.4.3.zip
cd ../ && chown -R es:es analysis-pinyin
# 启动es
/usr/local/es/elasticsearch-8.4.3/bin/elasticsearch -d

3、拼音分词器提供的功能

拼音分词器提供如下功能

拼音分词器提供的功能

每个选项的含义 可以通过 文档中的例子来看懂。

4、简单测试一下拼音分词器

4.1 dsl

GET _analyze
{
  "text": ["我是中国人"],
  "analyzer": "pinyin"
}

"analyzer": "pinyin" 此处的pinyin是拼音分词器自带的。

4.2 运行结果

运行结果

从图片上,实现了拼音分词,但是这个不一定满足我们的需求,比如没有中文了,单个的拼音(比如:wo)是没有什么用的,需要对拼音分词器进行定制化。

5、es中分词器的组成

elasticsearch中分词器analyzer由如下三个部分组成:

  1. character filters: 用于在tokenizer之前对文本进行处理。比如:删除字符,替换字符等。
  2. tokenizer: 将文本按照一定的规则分成独立的token。即实现分词功能。
  3. tokenizer filter:tokenizer输出的词条做进一步的处理。比如: 同义词处理,大小写转换、移除停用词,拼音处理等。
处理流程

6、自定义一个分词器实现拼音和中文的搜索

需求: 自定义一个分词器,即可以实现拼音搜索,也可以实现中文搜索。

1、创建mapping

PUT /test_pinyin
{
  "settings": {
    // 分析阶段的设置
    "analysis": {
      // 分析器设置
      "analyzer": {
        // 自定义分析器,在tokenizer阶段使用ik_max_word,在filter上使用py
        "custom_analyzer": {
          "tokenizer": "ik_max_word",
          "filter": "custom_pinyin"
        }
      },
      // 由于不满足pinyin分词器的默认设置,所以我们基于pinyin
      // 自定义了一个filter,叫py,其中修改了一些设置
      // 这些设置可以在pinyin分词器官网找到
      "filter": {
        "custom_pinyin": {
          "type": "pinyin",
          // 不会这样分:刘德华 > [liu, de, hua]
          "keep_full_pinyin": false,
          // 这样分:刘德华 > [liudehua]
          "keep_joined_full_pinyin": true,
          // 保留原始token(即中文)
          "keep_original": true,
          // 设置first_letter结果的最大长度,默认值:16
          "limit_first_letter_length": 16,
          // 当启用此选项时,将删除重复项以保存索引,例如:de的> de,默认值:false,注意:位置相关查询可能受影响
          "remove_duplicated_term": true,
          // 如果非汉语字母是拼音,则将其拆分为单独的拼音术语,默认值:true,如:liudehuaalibaba13zhuanghan- > liu,de,hua,a,li,ba,ba,13,zhuang,han,注意:keep_none_chinese和keep_none_chinese_together应首先启用
          "none_chinese_pinyin_tokenize": false
        }
      }
    }
  },
  // 定义mapping
  "mappings": {
    "properties": {
      "name": {
        "type": "text",
        // 创建倒排索引时使用的分词器
        "analyzer": "custom_analyzer",
        // 搜索时使用的分词器,搜索时不使用custom_analyzer是为了防止 词语的拼音一样,但是中文含义不一样,导致搜索错误。 比如: 科技 和 客机,拼音一样,但是含义不一样
        "search_analyzer": "ik_smart"
      }
    }
  }
}

注意:
可以看到 我们的 name字段 使用的分词器是 custom_analyzer,这个是我们在上一步定义的。但是搜索的时候使用的是 ik_smart,这个为甚么会这样呢?
假设我们存在如下2个文本 科技强国这是一架客机, 那么科技客机的拼音是不是就是一样的。 这个时候如果搜索时使用的分词器也是custom_analyzer那么,搜索科技的时候客机也会搜索出来,这样是不对的。因此在搜索的时候中文就以中文搜,拼音就以拼音搜。

{
  "name": {
    "type": "text",
    "analyzer": "custom_analyzer",
    "search_analyzer": "ik_smart"
  }
}

analyzersearch_analyzer的值都是custom_analyzer,搜索时也会通过拼音搜索,这样的结果可能就不是我们想要的。

2、插入数据

PUT /test_pinyin/_bulk
{"index":{"_id":1}}
{"name": "科技强国"}
{"index":{"_id":2}}
{"name": "这是一架客机"}
{"index":{"_id":3}}

3、搜索数据

搜索数据

7、参考文档

1、https://github.com/medcl/elasticsearch-analysis-pinyin/tree/master

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,921评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,635评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,393评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,836评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,833评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,685评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,043评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,694评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,671评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,670评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,779评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,424评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,027评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,984评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,214评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,108评论 2 351
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,517评论 2 343

推荐阅读更多精彩内容