Python的内存管理机制可以从三个方面来讲:
- 引用计数
- 垃圾回收
- 内存池机制
引用计数
Python采用了类似Windows内核对象一样的方式来对内存进行管理。每一个对象,都维护这一个对指向该对对象的引用的计数。
引用计数加1:
1.对象被创建:x=4
2.另外的变量被创建:y=x
3.被作为参数传递给函数:foo(x)
4.作为容器对象的一个元素:a=[1,x,'33']
引用计数减少:
1.一个本地引用离开了它的作用域。比如上面的foo(x)函数结束时,x指向的对象引用减1。
2.对象的别名被显式的销毁:del x
3.对象的一个别名被赋值给其他对象:x=123
4.对象从一个窗口对象中移除:myList.remove(x)
5.窗口对象本身被销毁:del myList,或者窗口对象本身离开了作用域。
垃圾回收
1、当内存中有不再使用的部分时,垃圾收集器就会把他们清理掉。它会去检查那些引用计数为0的对象,然后清除其在内存的空间。当然除了引用计数为0的会被清除,还有一种情况也会被垃圾收集器清掉:当两个对象相互引用时,他们本身其他的引用已经为0了。
2、垃圾回收机制还有一个循环垃圾回收器, 确保释放循环引用对象(a引用b, b引用a, 导致其引用计数永远不为0)。
内存池机制
Python的内存机制以金字塔行,-1,-2层主要有操作系统进行操作,
第0层是C中的malloc,free等内存分配和释放函数进行操作;
第1层和第2层是内存池,有Python的接口函数PyMem_Malloc函数实现,当对象小于256K时有该层直接分配内存;
第3层是最上层,也就是我们对Python对象的直接操作;
Python提供了对内存的垃圾收集机制,但是它将不用的内存放到内存池而不是返回给操作系统。
正如上面提到的,Python中所有小于256个字节的对象都使用pymalloc实现的分配器(这里还是会调用 malloc 分配内存,但每次会分配一块大小为256k的大块内存.),而大的对象则使用系统的 malloc。另外Python对象,如整数,浮点数和List,都有其独立的私有内存池,对象间不共享他们的内存池。也就是说如果你分配又释放了大量的整数,用于缓存这些整数的内存就不能再分配给浮点数。经由内存池登记的内存到最后还是会回收到内存池,并不会调用 C 的 free 释放掉.以便下次使用.对于简单的Python对象,例如数值、字符串,元组(tuple不允许被更改)采用的是复制的方式(深拷贝?),也就是说当将另一个变量B赋值给变量A时,虽然A和B的内存空间仍然相同,但当A的值发生变化时,会重新给A分配空间,A和B的地址变得不再相同。
注:在Python中,许多时候申请的内存都是小块的内存,这些小块内存在申请后,很快又会被释放,由于这些内存的申请并不是为了创建对象,所以并没有对象一级的内存池机制。这就意味着Python在运行期间会大量地执行malloc和free的操作,频繁地在用户态和核心态之间进行切换,这将严重影响 Python的执行效率。为了加速Python的执行效率,Python引入了一个内存池机制,用于管理对小块内存的申请和释放。这也就是之前提到的 Pymalloc机制。
接着,我们继续谈python内存情况,在面试过程中被问到
python中的list在内存中是以数组方式存储还是链表的方式呢???
通过查阅一些资料,发现list的存储方式是arraylist(动态数组),与它相对应的是linkedlist(链表),arraylist其实就是数组了,其实就相当于C++中的vector,只不过这时的list可以存储不同类型的元素。那么我们明白了这些后,使用的时候才会更加注意对于插入或者删除频繁的时候,list效率是比较低的,毕竟它存储形式是arraylist。
python中的tuple存储形式是什么呢?
tuple在内存中的存储形式就是常量数组,因为它是不可变的数据类型,所以常量数组估计大家都能理解。
python中的dictionary存储形式是什么呢?
字典相当于C++标准库中的map
字符串呢
字符串其实就是不能修改的list,也是数组的形式,这和c/c++是一致的。
参考文章:
http://hackerxu.com/2015/01/13/ram.html
http://blog.csdn.net/zhangweijiqn/article/details/39235169