,什么叫做有理数和无理数?在我们要知道这两种数之前,我们先要,先要来看一下数学中有哪几类数,有人可能会提到因数倍数,质数和合数,奇数和偶数,但是你想下这一数有什么特点?是不是他们每个数都是自然数,所以这些数我们都统称为自然数。
在我们的祖先那个时代,自然数就可以表示一个物体了,比如一头牛,他们就可以统称说唯一,但是自然数只能满足他们的生活了吗?你想一下小数,小数是怎么发明出来的?我来举个例子,他们那个时候也肯定有长度单位,但是呢,肯定有一些小的物体不足这个长度,就应该有更小的数了,这时候他们又采用十进制,把一平均分成十,就有了0.1,也就有了小数。
分数也是在不足一的情况下被发明出来的,比如,我把一个月饼平均分给两个人,每个人得到的那一份可以怎么表示?这时候就有了分数。
2:分数自然数小数之间的关系
如果这些数之间有关系的话说明这一类的一些数可以转化为另一类的那些数,那这三种数之间怎么转化呢?
现在我举一些特例来证明
比如1/2,它的含义就是把整体一平均分成两份,取其中的一份占整体的1/2,那和它相对应的小数又是什么呢?我们可以在数轴上面证明。
1/2在数轴上如何表示?我们先找出它的分数单位,就是把一平均分成两份,然后我们就看起点,就是从零开始,往什么方向跳呢?他是往右边跳的,所以是从零开始往右跳,但是你跳了几个几?我们跳了一个1/2,也跳到了第一个新位置,这个新位置就是1/2。
现在弄,我们来看下1/2对应的小数是什么?我们先看一下,把一平均分成十份,其中的一份我们都知道,是0.1,那么1就是有十个0.1而组成的,我们可以把十个0.1看成一个整体,平均分成两份,那么其中的一份就是五个0.1,五个0.1也就是0.5,而他正好是十个0.1的1/2,所以1/2对应的小数是0.5。如下图
那我就想知道,所有的分数都可以转化为小数吗,我想应该是的,因为每一个分数都是可以由一个除法算式组成,比如说是1/3,就是1÷3,也就是把一平均分成三份,其中的一份是多少,那每一份就是1/3啊!竟然每一个分数都可以转化为一个除法算式,那算是也肯定会有答案,那么答案就可能会是小数。
我们柜的只不过是一个特例,我们要用代数式来证明,因为代数式可以代表所有的数字,比如a分之b,转化为竖式就是,B÷a,这就代表我们的这个结论是对的。
那竟然一些分数和小数一样,问题又来了,既然一些分数和一些小数相同弄,可不可以减去一些数,比如1/2和0.5一样,我就不要这个分数了,只要小数,这样真的可以吗?
当然是不可以的,分数和小数两种数都有他们存在的必要性,比如我把一个蛋糕平均分给三个人,每人得到了多少?如果你不要分数来表示的话,那小数只能表示每个人可以得到0.3循环份,用小数来表示就不怎么合适吧,用分数来表示就是1/3,这样也就更合适了。
那我到底要减去一些什么分数?比如说是50/100,这样的分数我就可以去掉,因为他就没有意义,说白了,他就是1/2,而且他那样表示也特别的麻烦,也就是我们要最终要这两个数产生互质关系,就是除了一以后没有公因数了,这样的话,这个分数就是最简分数,我们就不用50/100了,数学就是这么简洁。
所以我们要的分数都是最简分数,那3/17呢?我们如何判断它是不是一个最简分数?首先,我们要找到他们之间的公因数,如果有的话,让分子和分母同时除以那个数,它的大小也不会变,也可以把这个分数来简化,这个数他已经就是最简分数了,因为他没有公因数了。
那么假分数可以去掉吗?当然可以,他其实和真分数是一样的,因为它也可以转化为一个除法算式啊,这样他的答案又不是个小数,要不就是一个自然数了。
我还发现只要是分数,可以转化为整数的都是假分数,而且分母是分子的因数,分子和分母也是几倍的关系,这样在我们的分数字典里面就没有像这样的分数了,我们就只有了互质的分数。
有理数和无理数
有理数和无理数,说白了,有理数就是两个数相除等不等于你这个数,无理数就是没有两个数相除等于这个数,那我们来分自然数小数还有分数,这几类的书,他们归哪一类?
我们来看下自然数,自然数肯定是要归到有理数的,我用代数式来证明。
X他乘以一个二,或者乘任何一个数,他肯定会得到另一个数,那那一个数就是它的倍数,再用这个倍数除以他乘的那个数,就可以得到x,所以自然数就是合理数。
分数也属于合理数,又一个分数,我们都知道它可以代表一个除法算式,这样也就符合我们的合理数这个条件,所以分数也是合理数。
但是我认为小树就是无理数,有人问为什么呀?而且任何两个自然数相除都可以得到一个小数,为什么说它是无理数呢?你想一下,你漏了无限不循环小数,任何两个数相除不可能是无限不循环小数,就算你看起来一个数特别像,但是你出到最后永远都会出现它的循环节,所以小数不能分为合理数,他就是无理数。
这就是和理数和无理数,同时我们也做到了,不重不漏,感谢您的观看,喜欢的话可以关注我,打赏我。拜拜