大数据分析常用去重算法分析『HyperLogLog 篇』

在上篇推送中,Kyligence 大数据工程师陶加涛为大家介绍了利用 Roaring Bitmap 来进行精确去重。虽然这种算法能大大地减少存储开销,但是随着数据量的增大,它依然面临着存储上的压力。在本篇推送中将要介绍的 HyperLogLog (下称 HLL) 是一种非精确的去重算法,它的特点是具有非常优异的空间复杂度(几乎可以达到常数级别)。

HLL 算法需要完整遍历所有元素一次,而非多次或采样;该算法只能计算集合中有多少个不重复的元素,不能给出每个元素的出现次数或是判断一个元素是否之前出现过;多个使用 HLL 统计出的基数值可以融合。

HLL 算法有着非常优异的空间复杂度,可以看到它的空间占用随着基数值的增长并没有变化。 HLL 后面不同的数字 代表着不同的精度,数字越大,精度越高,占用的空间也越大,可以认为 HLL 的空间占用只和精度成正相关。

HLL算法原理感性认知

HLL 算法的原理会涉及到比较多的数学知识,这边对这些数学原理和证明不会展开。举一个生活中的例子来帮助大家理解HLL算法的原理:比如你在进行一个实验,内容是不停地抛硬币,记录你连续抛到正面的次数(这是数学中的伯努利过程,感兴趣同学可以自行研究下);如果你最多的连抛正面记录是3次,那可以想象你并没有做这个实验太多次,如果你最长的连抛正面记录是 20 次,那你可能进行了这个实验上千次。

一种理论上存在的情况是,你非常幸运,第一次进行这个实验就连抛了 20 次正面,我们也会认为你进行了很多次这个实验才得到了这个记录,这就会导致错误的预估;改进的方式是请 10 位同学进行这项实验,这样就可以观察到更多的样本数据,降低出现上述情况的概率。这就是 HLL 算法的核心思想。

HLL算法具体实现

HLL 会通过一个 hash 函数来求出集合中所有元素的 hash 值(二进制表示的 hash 值,就可以理解为一串抛硬币正反面结果的序列),得到一个 hash 值的集合,然后找出该 hash 值集合中,第一个 1 出现的最晚的位置。例如有集合为 [010, 100, 001], 集合中元素的第一个 1 出现的位置分别为 2, 1, 3,可以得到里面最大的值为 3,故该集合中第一个1出现的最晚的位置为 3。因为每个位置上出现1的概率都是 1/2,所以我们可以做一个简单的推断,该集合中有 8 个不重复的元素。

可以看到这种简单的推断计算出来集合的基数值是有较大的偏差的,那如何来减少偏差呢? 正如我上面的例子里说的一样,HLL 通过多次的进行试验来减少误差。 那它是如何进行多次的实验的呢?这里 HLL  使用了分桶的思想 ,上文中我们一直有提到一个精度的概念,比如说 HLL(10),这个 10 代表的就是取该元素对应 Hash 值二进制的后 10 位,计算出记录对应的桶,桶中会记录一个数字,代表对应到该桶的 hash 值的第一个 1 出现的最晚的位置。如上图,该 hash 值的后 10 位的 hash 值是 0000001001,转成 10 进制是 9,对应第 9 号桶,而该 hash 值第一个 1 出现的位置是第 6 位,比原先 9 号桶中的数字大,故把 9 号桶中的数字更新为 6。 可以看到桶的个数越多,HLL 算法的精度就越高 ,HLL(10) 有 1024( 2 10 ) 个桶,HLL(16)有 65536( 2 16 ) 个桶。同样的,桶的个数越多,所占用的空间也会越大。

刚才的例子我们省略了一些细节,为了让大家不至于迷失在细节中而忽视了重点,真实的 HLL 算法的完整描述见上图,这边的重点是 计算桶中平均数时使用调和平均数 。调和平均数的优点是可以过滤掉不健康的统计值,使用算术平均值容易受到极值的影响(想想你和马云的平均工资),而调和平均数的结果会倾向于集合中比较小的元素。HLL 论文中还有更多的细节和参数,这边就不一一细举,感兴趣的同学可以自己阅读下论文。

HLL评估

HLL 的误差分布服从正态分布,它的空间复杂度: O(m log 2 log 2 N) , N 为基数, m 为桶个数。这边给大家推导一下它的空间复杂度,我有 2 6 4 个的不重复元素(Long. MAX_VALUE),表达为二进制一个数是 64 位,这是第一重 log 2 , 那么第一个1最晚可能出现在第 64 位。64 需要 6 个 bit ( 2 6=64) 就可以存储,这是第二重   log 2 。如果精度为 10,则会有 1024 个桶,所以最外面还要乘以桶的个数。由于需要完整的遍历元素一遍,所以它的时间复杂度是一个线性的时间复杂度。

在Kylin中的应用

在 Kylin 中使用 HLL 非常简单,在编辑度量的页面选择 COUNT DISTINCT,Return Type 选为非 Precisely 的其他选项,大家根据自己的需求选择不同的精度就可以愉快地使用了。

我们回到最开始的去重场景,看看使用了 Bitmap 和 HLL 会给我们带来什么增益:无优化 case 下,每个 item 对应的 user_id 就可以看成 存储原始值的一个集合 ;在使用 Bitmap 优化的case 下,每个 item 对应的 user_id 就可以看成一个 Bitmap 实例,同理 HLL就是一个 HLL 的实例, Bitmap/HLL 实例占用的空间都会比直接存储原始值的集合要小,这就达到了我们开始提的减少 shuffle 数据量的需求。

Q:您好,问一下关于精确去重的问题, 我选择了非精确去重,最后的误差率有时候会比界面上提示的值要高一些,这是为什么?

A:首先 HLL 的误差分布服从正态分布,也就是说是在99%的情况下是这个误差,同时 HLL 对于基数比较低的情况,误差会偏高。如果你的基数比较低的话,我推荐使用精确去重。

Q:我想要了解一下 Bitmap 在 Kylin 中,它最终落盘在 HBase 里面是什么样子的?

A:在 HBase 中存储的当然都是 Bytes。这个问题其实就是 Bitmap 的序列化的形式,Roaring Bitmap提供了序列化和反序列化的实现,你也可以写自己的序列化/反序列化的实现。

Q:Roaring Bitmap 里这些 container 要我们自己手动的指定吗。

A:不需要,Roaring Bitmap 会自动选择使用哪个 Container。

最近整理了一套适合2019年学习的Java\大数据资料,从基础的Java、大数据面向对象到进阶的框架知识都有整理哦,可以来我的主页免费领取哦。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,732评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,496评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,264评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,807评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,806评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,675评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,029评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,683评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,704评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,666评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,773评论 1 332
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,413评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,016评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,978评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,204评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,083评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,503评论 2 343

推荐阅读更多精彩内容