2023-01-08 Jupyter 中显示gym渲染窗口及保存为gif

最近开始尝试深度强化学习,很好的一个环境平台是Gym: https://www.gymlibrary.dev/content/basic_usage/

安装: pip install gym[all]

强化学习、深度强化学习资源:

Jupyter 中显示gym渲染窗口及保存为gif

参考:

import numpy as np
import time 
import gym
import matplotlib.pyplot as plt 
from matplotlib import animation 
%matplotlib inline
from IPython import display
# 显示gym渲染窗口的函数,在运行过程中将 env.render() 替换为 show_state(env, step, info).
def show_state(env, step=0, info=""):
    plt.figure(3)
    plt.clf()
    plt.imshow(env.render(mode='rgb_array'))
    plt.title("Step: %d %s" % (step, info))
    plt.axis('off')

    display.clear_output(wait=True)
    display.display(plt.gcf())
def display_frames_as_gif(frames, SavePath = './test.gif'):
    patch = plt.imshow(frames[0])
    plt.axis('off')
    def animate(i):
        patch.set_data(frames[I])

    anim = animation.FuncAnimation(plt.gcf(), animate, frames = len(frames), interval=1)
    anim.save(SavePath, writer='ffmpeg', fps=30)
# 运行环境实例1

import gym

frames=[]
env = gym.make('CartPole-v1')
info = env.reset() # 重置环境 

for step in range(100):
    frames.append(env.render(mode='rgb_array')) # 加载各个时刻图像到帧
    show_state(env, step, info = 'CartPole_test') # 显示渲染窗口
    action = env.action_space.sample() # 随机动作,需要学习的动作模型
    # action=np.random.choice(2) # 随机返回: 0 小车向左,1 小车向右

    observation,reward,done,info = env.step(action) # 执行动作并返回结果

env.close()

display_frames_as_gif(frames, SavePath = './CartPole_result.gif') # 保存运行结果动图
CartPole_result.gif
# 运行环境实例2

import gym

frames=[]
env = gym.make("LunarLander-v2")
env.reset()
env.action_space.seed(42)

observation, info = env.reset(seed=42, return_info=True)

for step in range(100):
    frames.append(env.render(mode='rgb_array')) # 加载各个时刻图像到帧
    env.render(mode='human') # 这行不能和env定义写在一行,否则会报错,原因不明
    time.sleep(0.1) # 控制显示速度变慢
    show_state(env, step, info="LunarLander_test")
    observation, reward, done, info = env.step(env.action_space.sample())

    if done:
        observation, info = env.reset(return_info=True)

env.close()
display_frames_as_gif(frames, SavePath = './LunarLander_result.gif') # 保存运行结果动图
LunarLander_result.gif
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容