Raft算法的理解

简介

Raft 是一种通过日志复制来实现的一致性算法,提供了和Paxos 算法相同的功能和性能
Raft 将一致性问题分解成了三个相对独立的子问题

  • Leader选举:一个新的Leader需要被选举出来,当先存的Leader宕机的时候
  • 日志复制:Leader必须从客户端接收日志然后复制到集群中的其他节点,并且强制要求其他节点的日志保持和自己相同
  • 安全性:选举安全性、Leader只附加原则、日志匹配原则、Leader完全特性、状态机安全特性等

Leader选举

在Raft中,任何时候一个服务器可以扮演下面角色之一:

  1. Leader: 处理所有客户端交互,日志复制等,一般一次只有一个Leader.
  2. Follower: 类似选民,完全被动
  3. Candidate候选人: 类似Proposer律师,可以被选为一个新的Leader

其中三种角色的变化如下:


Server State.jpg
Term:

在Raft中使用了一个可以理解为任期的概念,用Term作为一个周期,每个Term都是一个连续递增的编号,每一轮选举都是一个Term周期,在一个Term中只能产生一个Leader;
其中Term的变化流程:
Raft开始时所有Follower的Term为1,其中一个Follower逻辑时钟到期后转换为Candidate,Term加1这是Term为2,然后开始选举,这时候有几种情况会使Term发生改变:
  1:如果当前Term为2的任期内没有选举出Leader或出现异常,则Term递增,开始新一任期选举
  2:当这轮Term为2的周期选举出Leader后,过后Leader宕掉了,然后其他Follower转为Candidate,Term递增,开始新一任期选举
  3:当Leader或Candidate发现自己的Term比别的Follower小时Leader或Candidate将转为Follower,Term递增
  4:当Follower的Term比别的Term小时Follower也将更新Term保持与其他Follower一致;

选举(Election)

Raft的选举由定时器来触发,每个节点的选举定时器时间都是不一样的,默认是0~1000ms之间,开始时状态都为Follower某个节点定时器触发选举后Term递增,状态由Follower转为Candidate,向其他节点发起RequestVote RPC请求,这时候有三种可能的情况发生:
  1:该RequestVote请求接收到n/2+1(过半数)个节点的投票,从Candidate转为Leader,向其他节点发送heartBeat以保持Leader的正常运转
  2:在此期间如果收到其他节点发送过来的AppendEntries RPC请求,如该节点的Term大则当前节点转为Follower,否则保持Candidate拒绝该请求
  3:Election timeout发生则Term递增,重新发起选举
在一个Term期间每个节点只能投票一次,所以当有多个Candidate存在时就会出现每个Candidate发起的选举都存在接收到的投票数都不过半的问题,这时每个Candidate都将Term递增、重启定时器并重新发起选举,由于每个节点中定时器的时间都是随机的,所以就不会多次存在有多个Candidate同时发起投票的问题。
有这么几种情况会发起选举,1:Raft初次启动,不存在Leader,发起选举;2:Leader宕机或Follower没有接收到Leader的heartBeat,发生选举超时从而发起选举;
所以在选举过程中,很关键一点就是选举定时器时间,由于这个时间是随机的,在0~1000ms之间,所以最新醒来的机器能够很快给其他机器发送投票,最终能很快达成一致,选出Leader


Leader Election1.jpeg
Leader Election2.jpeg

日志复制

当Leader被选出来后,就可以接受客户端发来的请求了(Leader是接收客户端请求的唯一载体),每个请求包含一条需要被replicated state machines执行的命令。
Leader会把请求作为一个log entry append到本机日志中,然后给其它的server发AppendEntries RPC请求。当Leader确定一个log entry被安全复制了(大多数副本已经将该命令写入日志当中),就存储这条log entry到状态机中然后返回结果给客户端。如果某个Follower宕机了或者运行的很慢,或者网络丢包了,则会一直给这个Follower发AppendEntries RPC直到日志一致。

当一条日志是commited时,Leader才可以将它应用到状态机中。Raft保证一条commited的log entry已经持久化了并且会被所有的节点执行。

当一个新的Leader被选出来时,它的日志和其它的Follower的日志可能不一样,这个时候,就需要一个机制来保证日志的一致性。一个新Leader产生时,集群状态可能如下:


Replicated State Machines.jpg

最上面这个是新Leader,a~f是Follower,每个格子代表一条log entry,格子内的数字代表这个log entry是在哪个Term上产生的。

新Leader产生后,就以Leader上的log为准。其它的follower要么少了数据比如b,要么多了数据,比如d,要么既少了又多了数据,比如f。

要使得Flower的日志进入和自己一致的状态,Leader必须找到最后两者达成一致的地方。Leader针对每一个Flower维护了一个 nextIndex,表示Leader给各个Follower发送的下一条log entry在log中的index。当一个Leader刚成为Leader时,他初始化所有的 nextIndex 值为自己的最后一条日志的index加1。Leader给Follower发送AppendEntriesRPC消息,带着(term_id, (nextIndex-1)), term_id即(nextIndex-1)这个槽位的log entry的term_id,Follower接收到AppendEntriesRPC后,会从自己的log中找是不是存在这样的log entry,如果不存在,就给Leader回复拒绝消息,然后Leader则将nextIndex减1,再重复,直到AppendEntriesRPC消息被接收。

以Leader和b为例:

初始化时,Leader把nextIndex置为11,Leader给b发送AppendEntriesRPC(6,10),b在自己log的10号槽位中没有找到term_id为6的log entry。则给Leader回应一个拒绝消息。接着,Leader将nextIndex减一,变成10,然后给b发送AppendEntriesRPC(6, 9),b在自己log的9号槽位中同样没有找到term_id为6的log entry。循环下去,直到Leader发送了AppendEntriesRPC(4,4),b在自己log的槽位4中找到了term_id为4的log entry。接收了消息。随后,Leader就可以从槽位5开始给b推送日志了。

安全性

特性 解释
选举安全特性 对于一个给定的任期号,最多只会有一个Leader被选举出来
Leader只附加原则 Leader绝对不会删除或者覆盖自己的日志,只会增加
日志匹配原则 如果两个日志在相同的索引位置的日志条目的任期号相同,那么我们就认为这个日志从头到这个索引位置之间全部完全相同
Leader完全特性 如果某个日志条目在某个任期号中已经被提交,那么这个条目必然出现在更大任期号的所有Leader中
状态机安全特性 如果一个Leader已经在给定的索引值位置的日志条目应用到状态机中,那么其他任何的服务器在这个索引位置不会提交一个不同的日志

注:Raft 在任何时候都保证以上的各个特性。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,968评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,601评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,220评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,416评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,425评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,144评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,432评论 3 401
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,088评论 0 261
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,586评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,028评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,137评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,783评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,343评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,333评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,559评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,595评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,901评论 2 345

推荐阅读更多精彩内容