学习笔记 | 概率论 - 基本概念(3):概率的概念、基本性质及公式


书接上回。

对于 随机试验E:拋一次骰子和它的 样本空间S={1, 2, 3, 4, 5, 6},对于它们的每一个事件A(也就是抛出的每个点数),都有一个实数P(A),可以用来表示事件A在一次实验中发生的可能性大小。这个实数P(A)就叫做事件A的概率


概率的基本性质如下:

在未来的学习中,我们会了解到,为什么可以用P(A)来表示事件A的概率。

不过,由概率的定义,我们还可以推导出下列概率的其他性质


性质3叫做概率的减法公式性质6叫做概率的加法公式,会单独考查


六个性质的证明(及推广)如下:


证明一般不要求掌握,了解就好

回到我们一开始说的一个实验当中来。

我们看下面两个例子。

  • 试验E1:拋一次骰子,观察它的点数

  • 试验E2:拋一次硬币,分别观察它正面、反面朝上的次数

我们会发现它们有两个共同的特点。

翻译一下就是:结果是有限个数的,并且每个结果出现的概率是相同的。

这种试验就叫做等可能概型,也叫作古典概型(有时候也叫作古典型概率

等可能概型计算公式是啥呢?

(①的意思是可列可加性是有限可加性的一种特殊情况,在这里两者是等价的)

简单点说,就是 A出现的次数/事件的总次数

除了古典型概率之外,还有一种概率跟它相似,叫做几何型概率几何型概率一般出现在几何图形中,它的计算公式为满足条件的面积/总面积



说完了古典型概率和几何型概率,我们再来看另外一种情况。依然是下面两个例子:

  • 试验E3:拋一枚硬币它两次一面

  • 试验E4:将一枚硬币抛掷两次,在至少有一次正面朝上的情况下,两次出同一面

对于试验E3,我们有样本空间S3={ 正, },很显然,两次一面的概率P(A3)=2/4=1/2。

那么试验E4该怎么求解呢?

很显然,试验E4跟试验E3不太一样,它多了一个“前提条件”,也就是多了一次“事件”的情况。我们不妨这么处理。

设事件A4为“至少有一次正面朝”,事件B4两次掷出同一面”。

那么,我们所求的,就已经变成了:在已知事件A4发生的情况下,事件B4发生的概率

对于试验E4,有样本空间S4={ 正, }A4={ 正 }B4={  }。

写到这里,我们就能很显然的发现,“”这种情况(事件)是不可能会发生的,所以如果在事件A4发生的情况下,事件B4发生了,那么只可能会是“正”这一种情况。

又因为事件A4总共包含三种情况,“正正”只是其中的一种“正正”发生的概率是

所以,试验E4发生的概率P(B4 | A4)=

那么问题来了。

试验E3跟试验E4的结果不一样,不一样之处就在于这个“前提条件”上。

有前提条件的概率问题,我们一般叫做条件概率

条件概率的定义公式如下

通过条件概率的定义,我们不难推导出以下的公式,一般叫做条件概率的乘法公式

乘法公式可以进行一定的推广

除了乘法公式之外,条件概率还有全概率公式贝叶斯公式两个公式。

在介绍全概率公式之前,我们先介绍样本空间的划分的定义。

划分就像“切蛋糕”,是对样本空间的“分组”。

就像对于样本空间E={1, 2, 3, 4, 5, 6}来说,B1={1, 2, 3}和B2={4, 5, 6}就是样本空间S的一个划分。当然,B3={1, 4, 6}B2={2, 3, 5}就是样本空间S的一个划分。

知道了划分的概念之后,我们就可以引出全概率公式

除了全概率公式之外,另一个重要的公式就是贝叶斯公式

n=2下的全概率公式和贝叶斯公式,是比较常用的两个公式,也是最便于理解的两个公式。


关键词(本节小结):

概率、条件概率的概念

概率的基本性质

古典型概率和几何型概率的计算

概率的加法公式、减法公式、乘法公式、全概率公式、贝叶斯公式

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,937评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,503评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,712评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,668评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,677评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,601评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,975评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,637评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,881评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,621评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,710评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,387评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,971评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,947评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,189评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,805评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,449评论 2 342

推荐阅读更多精彩内容