lxidea的 Boolan C++设计模式 学习笔记(三)

本周的设计模式比较多了,主要分为“对象性能”模式,“状态变化”模式,

对象性能模式

Singleton单件模式

保证一个类仅有一个实例,并提供一个该实例的全局访问点。

class Singleton{
private:
    Singleton();
    Singleton(const Singleton& other);
public:
    static Singleton* getInstance();
    static Singleton* m_instance;
};

Singleton* Singleton::m_instance=nullptr;

//线程非安全版本
Singleton* Singleton::getInstance() {
    if (m_instance == nullptr) {
        m_instance = new Singleton();
    }
    return m_instance;
}

//线程安全版本,但锁的代价过高
Singleton* Singleton::getInstance() {
    Lock lock;
    if (m_instance == nullptr) {
        m_instance = new Singleton();
    }
    return m_instance;
}

//双检查锁,但由于内存读写reorder不安全
Singleton* Singleton::getInstance() {
    
    if(m_instance==nullptr){
        Lock lock;
        if (m_instance == nullptr) {
            m_instance = new Singleton();
        }
    }
    return m_instance;
}

//C++ 11版本之后的跨平台实现 (volatile)
std::atomic<Singleton*> Singleton::m_instance;
std::mutex Singleton::m_mutex;

Singleton* Singleton::getInstance() {
    Singleton* tmp = m_instance.load(std::memory_order_relaxed);
    std::atomic_thread_fence(std::memory_order_acquire);//获取内存fence
    if (tmp == nullptr) {
        std::lock_guard<std::mutex> lock(m_mutex);
        tmp = m_instance.load(std::memory_order_relaxed);
        if (tmp == nullptr) {
            tmp = new Singleton;
            std::atomic_thread_fence(std::memory_order_release);//释放内存fence
            m_instance.store(tmp, std::memory_order_relaxed);
        }
    }
    return tmp;
}

在单件模式中,为了让多个线程同时运行时,保证只存在一个类对象实例,分别使用了线程安全但代价很高的锁、为了改进性能设计的有线程不安全因素的双检查锁、以及C++后的跨平台线程安全双检查锁。

Flyweight享元模式

Flyweight模式主要为了使大量细粒度的对象同时存在系统中时带来的巨大的开销。如果这些细粒度的对象存在共同的数据成员或者变量,那么可以通过共享的方式来减小数据的重复带来的内存开销以及CPU开销。

比如,如果设计了一个字符串带有自己的字体,那么就可以把所有字符串所共有的字体独立共享出来,达到减小内存开销的目的。

class Font {
private:

    //unique object key
    string key;
    
    //object state
    //....
    
public:
    Font(const string& key){
        //...
    }
};

class FontFactory{
private:
    map<string,Font* > fontPool;
    
public:
    Font* GetFont(const string& key){

        map<string,Font*>::iterator item=fontPool.find(key);
        
        if(item!=footPool.end()){
            return fontPool[key];
        }
        else{
            Font* font = new Font(key);
            fontPool[key]= font;
            return font;
        }

    }
    
    void clear(){
        //...
    }
};

状态变化模式

在组件构建过程中,某些对象的状态经常面临变化,如何对这些变化进行有效的管理?同时又维持高层模块的稳定?“状态变化”模式为这一问题提供了一种解决方案。

State状态模式

允许一个对象在其内部状态改变时,改变它的行为。从而使对象看起来似乎修改了其行为。

要实现State状态模式,实际上依然是通过虚函数来实现的。通过定义一个state基类,让state基类指针指向初始state子类对象,当状态改变时,也就是该指针指向了另外一个state子类对象时,虚函数所执行的效果便不同了。

Memento备忘录模式

在不破坏封装性的前提下,捕获一个对象的内部状态,并在该对象之外保存这个状态。这样以后就可以将该对象恢复到原先保存的状态。

在备忘录模式中,通过Memento去获取原发器的状态,并进行序列化的存储,在需要的时候,通过原发器的成员函数来恢复原发器到某一种状态上去。

数据结构模式

常常有一些组件在内部具有特定的数据结构,如果让客户程序依赖这些特定的数据结构,将极大地破坏组件的复用。这时候,将这些特定数据结构封装在内部,在外部提供统一接口,来实现与数据结构无关的访问,是一种行之有效的解决方案。

Composite模式

将对象组合成树形结构以表示“部分-整体”的层次结构。Composite使得用户对单个对象和组合对象的使用具有一致性(稳定)。

#include <iostream>
#include <list>
#include <string>
#include <algorithm>

using namespace std;

class Component
{
public:
    virtual void process() = 0;
    virtual ~Component(){}
};

//树节点
class Composite : public Component{
    
    string name;
    list<Component*> elements;
public:
    Composite(const string & s) : name(s) {}
    
    void add(Component* element) {
        elements.push_back(element);
    }
    void remove(Component* element){
        elements.remove(element);
    }
    
    void process(){
        
        //1. process current node
        
        
        //2. process leaf nodes
        for (auto &e : elements)
            e->process(); //多态调用
         
    }
};

//叶子节点
class Leaf : public Component{
    string name;
public:
    Leaf(string s) : name(s) {}
            
    void process(){
        //process current node
    }
};


void Invoke(Component & c){
    //...
    c.process();
    //...
}


int main()
{

    Composite root("root");
    Composite treeNode1("treeNode1");
    Composite treeNode2("treeNode2");
    Composite treeNode3("treeNode3");
    Composite treeNode4("treeNode4");
    Leaf leat1("left1");
    Leaf leat2("left2");
    
    root.add(&treeNode1);
    treeNode1.add(&treeNode2);
    treeNode2.add(&leaf1);
    
    root.add(&treeNode3);
    treeNode3.add(&treeNode4);
    treeNode4.add(&leaf2);
    
    process(root);
    process(leaf2);
    process(treeNode3);
  
}

Composite模式到现在都还在广泛使用,因为它将接口与实际对象的内部结构隔离开来,从而使得客户程序对接口的使用具有一致性(稳定)。

Iterator迭代器模式

Chain of Responsibility职责链

行为变化

Command

Visitor

领域规则模式

在特定领域中,某些变化虽然频繁,但可以抽象为某种规则。这时候,结合特定领域,将问题抽象为语法规则,从而给出在该领域下的一般性解决方案。

Iterpreter

在经典Iterpreter模式中,通过将+和-操作用规则抽象为表达式的类,从而可以处理任意不带优先级的+和-组合操作。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容