九、随机森林

1.准备输入数据

输入数据是肿瘤样本表达矩阵exprSet、临床信息meta

load("TCGA-KIRC_sur_model.Rdata")
library(randomForest)
library(ROCR)
library(genefilter)
library(Hmisc)

2.构建随机森林模型

输入数据是表达矩阵(仅含tumor样本)和对应的生死。

x=t(exprSet)
y=meta$event
#构建模型,一个叫randomForest的函数,运行时间很长,存Rdata跳过
tmp_rf="TCGA_KIRC_miRNA_rf_output.Rdata"#提前放好的结果 
if(!file.exists(tmp_rf)){
  rf_output=randomForest(x=x, y=y,importance = TRUE, ntree = 10001, proximity=TRUE )
  save(rf_output,file = tmp_rf)
}
load(file = tmp_rf)
#top30的基因
varImpPlot(rf_output, type=2, n.var=30, scale=FALSE, 
           main="Variable Importance (Gini) for top 30 predictors",cex =.7)
rf_importances=importance(rf_output, scale=FALSE)
head(rf_importances)
#>                   %IncMSE IncNodePurity
#> hsa-let-7a-1 1.852761e-04     0.1787383
#> hsa-let-7a-2 2.167420e-04     0.1916623
#> hsa-let-7a-3 2.218169e-04     0.1858544
#> hsa-let-7b   7.399404e-05     0.1628646
#> hsa-let-7c   7.658155e-05     0.1635053
#> hsa-let-7d   1.974099e-04     0.2382185
#解释量top30的基因,和图上是一样的,从下往上看。
choose_gene=rownames(tail(rf_importances[order(rf_importances[,2]),],30))

3.模型预测和评估

3.1自己预测自己

rf.prob <- predict(rf_output, x)
re=cbind(y ,rf.prob)
head(re)
#>                              y   rf.prob
#> TCGA-A3-3307-01A-01T-0860-13 0 0.1364447
#> TCGA-A3-3308-01A-02R-1324-13 0 0.1793771
#> TCGA-A3-3311-01A-02R-1324-13 1 0.6709712
#> TCGA-A3-3313-01A-02R-1324-13 1 0.7742376
#> TCGA-A3-3316-01A-01T-0860-13 0 0.2035863
#> TCGA-A3-3317-01A-01T-0860-13 0 0.1619938

3.2 箱线图

对预测结果进行可视化。以实际的生死作为分组,画箱线图整体上查看预测结果。

re=as.data.frame(re)
colnames(re)=c('event','prob')
re$event=as.factor(re$event)
library(ggpubr) 
p1 = ggboxplot(re, x = "event", y = "prob",
               color = "event", palette = "jco",
               add = "jitter")+ 
  scale_y_continuous(limits = c(0,1)) +
  stat_compare_means()
p1

对比lasso回归,这个似乎更好一些?

3.3 ROC曲线

library(ROCR)
#library(caret)

pred <- prediction(re[,2], re[,1])
auc = performance(pred,"auc")@y.values[[1]]
auc
#> [1] 1

自己预测自己,auc值竟然是1。

4.切割数据构建模型并预测

4.1 切割数据

用R包caret切割数据,生成的结果是一组代表列数的数字,用这些数字来给表达矩阵和meta取子集即可。

library(caret)
set.seed(12345679)
sam<- createDataPartition(meta$event, p = .5,list = FALSE)

train <- exprSet[,sam]
test <- exprSet[,-sam]
train_meta <- meta[sam,]
test_meta <- meta[-sam,]

4.2 切割后的train数据集建模

和上面的建模方法一样。

#建模
x = t(train)
y = train_meta$event
tmp_rf="TCGA_KIRC_miRNA_t_rf_output.Rdata"
if(!file.exists(tmp_rf)){
  rf_output=randomForest(x=x, y=y,importance = TRUE, ntree = 10001, proximity=TRUE )
  save(rf_output,file = tmp_rf)
}
load(file = tmp_rf)

choose_gene=rownames(tail(rf_importances[order(rf_importances[,2]),],30))
head(choose_gene)
#> [1] "hsa-mir-511-1"  "hsa-mir-155"    "hsa-mir-409"    "hsa-mir-1185-1"
#> [5] "hsa-mir-1277"   "hsa-mir-149"

5.模型预测

用训练集构建模型,预测测试集的生死。

x = t(test)
y = test_meta$event
rf.prob <- predict(rf_output, x)
re=cbind(y ,rf.prob)
re=as.data.frame(re)
colnames(re)=c('event','prob')
re$event=as.factor(re$event)
library(ggpubr) 
p1 = ggboxplot(re, x = "event", y = "prob",
               color = "event", palette = "jco",
               add = "jitter")+ 
  scale_y_continuous(limits = c(0,1)) +
  stat_compare_means()
p1

再看AUC值。

library(ROCR)
# 训练集模型预测测试集
pred <- prediction(re[,2], re[,1])
auc= performance(pred,"auc")@y.values[[1]]
auc
#> [1] 0.7121311

*生信技能树课程笔记

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,602评论 6 481
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,442评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 152,878评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,306评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,330评论 5 373
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,071评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,382评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,006评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,512评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,965评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,094评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,732评论 4 323
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,283评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,286评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,512评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,536评论 2 354
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,828评论 2 345

推荐阅读更多精彩内容