卷积神经网络工作原理研究 - 语义和特征

关于Filter的意义

本章节参照了zhihu.com的内容。所以我完整引用,不进行任何修改。版权归原作者所有

Paste_Image.png

你眼睛真实看到的图像其实是上图的下半部分。而后经过大脑的层层映射后才出现了你脑中所“看见”的图像。CNN的卷积层部分可以理解成是学习你的“眼球结构”。

Paste_Image.png

同一个filter内部的权重是相同的,因为它用一个“抓取方式”去侦测特征。比如说“边缘侦测”。 你也注意到了,我们的眼睛不只观看一次,等到扫描完该特征后,另一个filter可以改变“抓取方式”去侦测另一个特征。所权重在同一个filter内是共享的理解是该filter对整个图片进行了某个特征的扫描。

Paste_Image.png

提取若干个特征后,就可以靠这些特征来判断图片是什么了。

大家应该知道大名鼎鼎的傅里叶变换,即一个波形,可以有不同的正弦函数和余弦函数进行叠加完成,卷积神经网络也是一样,可以认为一张图片是由各种不同特征的图片叠加而成的,所以它的作用是用来提取特定的特征,举个例子,比如给定一张图片,然后我只想提取它的轮廓,于是就需要卷积神经网络。


语义信息和高层神经元

版权信息:本节出于以下文章
瞎谈CNN:通过优化求解输入图像

对于CNN,有个很基础的认识:低层的部分学习纹理等简单信息,高层部分学习语义信息。在《Intriguing properties of neural networks》中的另一个发现是,CNN中表示高层学习到的语义信息的,并不是某一个神经元,而是高层神经元构成的空间。这个看上去有些显然的结论的一种佐证方式又是对输入图像进行优化:

公式

其中是神经元激活值对应的向量,v是一个随机向量。另外这和前边的优化有些许不同,x的取值范围限定在已有的图片集里。其实就是在某个高层响应的空间里,沿着某个方向挑选了一些该方向上值最大的图片。最后的结论是,无论是沿着某个随机方向找到的图片,还是以某一个神经元响应最大找到的图片,都能看出一些语义上的共性,比如下图:

配图

黑线以上是最大化某个神经元响应的样本,共性挺明显,黑线以下是最大化某层特征空间中某个方向响应的样本,共性也挺明显。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 206,839评论 6 482
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 88,543评论 2 382
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 153,116评论 0 344
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 55,371评论 1 279
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 64,384评论 5 374
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,111评论 1 285
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,416评论 3 400
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,053评论 0 259
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,558评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,007评论 2 325
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,117评论 1 334
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,756评论 4 324
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,324评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,315评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,539评论 1 262
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,578评论 2 355
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,877评论 2 345

推荐阅读更多精彩内容