第二学段(三∼四年级)
【内容要求】
1.数与运算
(1)在具体情境中,认识万以上的数,了解十进制计数法;探索并掌握多位数的乘除法,感悟从未知到已知的转化(例8)。
(2)结合具体情境,初步认识小数和分数,感悟分数单位(例9);会同分母分数的加减法和一位小数的加减法。
(3)在解决简单实际问题的过程中,理解四则运算的意义,能进行整数四则混合运算。
(4)探索并理解运算律(加法交换律和结合律、乘法交换律和结合律、乘法对加法的分配律),能用字母表示运算律。
(5)会运用数描述生活情境中事物的特征(例10),逐步形成数感、运算能力和初步的推理意识。
2.数量关系
(1)在实际情境中,运用数和数的运算解决问题;在解决实际问题的过程中,能结合具体情境,选择合适的单位进行简单估算,体会估算在生活中的作用(例11).
(2)能借助计算器进行计算,解决简单的实际问题,探索简单的规律(例12).
(3)在具体情境中,认识常见数量关系:总量=分量+分量(例 13)、总价=单价×数量、路程=速度×时间;能利用这些关系解决简单的实际问题。
(4)能在具体情境中了解等量的等量相等。
(5)能解决生活中的简单问题,并能对结果的实际意义作出解释,经历探索简单规律的过程(例14),形成初步的模型意识和应用意识。
【学业要求】
1.数与运算
能结合具体实例解释万以上数的含义,能认、读、写万以上的
数,会用万、亿为单位表示大数。能计算两位数乘除三位数。
能直观描述小数和分数,能比较简单的小数的大小和分数的大小;会进行同分母分数的加减运算和一位小数的加减运算。形成数感、符号意识和运算能力。
能描述减法与加法的关系、除法与乘法的关系;能进行整数四则混合运算(以两步为主,不超过三步),正确运用小括号和中括号。能说出运算律的含义,并能用字母表示;能运用运算律进行简便运算,解决相关的简单实际问题,形成运算能力。
2.数量关系
能在简单的实际情境中,运用四则混合运算解决问题,能选择合适的单位通过估算解决实际问题,形成初步的应用意识。
能在真实情境中,发现常见数量关系,感悟利用常见数量关系解决问题;能借助计算器进行计算,并解释计算结果的实际意义;形成初步的模型意识、几何直观和应用意识。
能在真实情境中,合理利用等量的等量相等进行推理,形成初步的推理意识(例15).
【教学提示】
数与运算的教学。在认识整数的基础上,认识小数和分数。通过数的认识和数的运算有机结合,感悟计数单位的意义,了解运算的一致性。
数的认识教学应为学生提供合理的情境,引导学生进一步经历整数的抽象过程,知道大数的意义和四位一级的表示方法,建立数感;通过学生熟悉的具体情境,引导学生初步认识分数,进行简单的分数大小比较,感悟分数单位;借助学生的生活经验,引导学生认识小数单位,进一步感悟十进制计数法。在这样的过程中,发展学生数感。
数的运算教学应利用整数的乘法运算,理解算理与算法之间的关系;在进行除法计算的过程中,进一步理解除法是乘法的逆运算。在这样的过程中,感悟如何将未知转为已知,形成初步的推理意识。通过小数加减运算、同分母分数加减运算,与整数运算进行比较,引导学生初步了解运算的一致性,培养运算能力。通过实际问题和具体计算,引导学生用归纳的方法探索运算律、用字母表示运算律,感知运算律是确定算理和算法的重要依据,形成初步的代数思维。
数量关系的教学。在具体情境中,利用加法或乘法表示数量之间的关系,建立加法模型和乘法模型,知道模型中数量的意义。估算的重点是解决实际问题。
常见数量关系的教学要在了解四则运算含义的基础上,引导学生理解现实问题中的加法模型是表示总量等于各分量之和,乘法模型可大体分为与个数有关(总价=单价×数量)和与物理量有关(路程= 速度×时间)的两种形式,感悟模型中量纲的意义。应设计合适的问题情境,引导学生分析和表达情境中的数量关系,启发学生会用数学的语言表达现实世界,形成初步的模型意识,提升问题解决能力。利 现实背景,引导学生理解等量的等量相等这一基本事实,形成初步的推理意识(例15).
估算教学要引导学生在具体的问题情境中选择合适的单位进行估算,体会估算在解决实际问题中的作用,了解估算的实际意义。