Task4

传统机器学习

一、朴素贝叶斯
朴素贝叶斯(naïve Bayes)法是基于贝叶斯定理与特征条件独立假设的分类方法。对于给定的训练数据集,首先基于特征条件独立假设学习输入/输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。

高斯朴素贝叶斯(sklearn)
#利用GaussianNB建立简单模型
import numpy as np
from sklearn.naive_bayes import GaussianNB
X = np.array([[-1, -1], [-2, -2], [-3, -3],[-4,-4],[-5,-5], [1, 1], [2, 2], [3, 3]])
y = np.array([1, 1, 1, 1, 1, 2, 2, 2])
clf = GaussianNB()#默认priors=None
clf.fit(X,y)

#priors属性:获取各个类标记对应的先验概率
clf.priors

#class_prior_属性:同priors一样,都是获取各个类标记对应的先验概率,区别在于priors属性返回列表,class_prior_返回的是数组
clf.class_count_

#class_count_属性:获取各类标记对应的训练样本数
clf.class_count_

#theta_属性:获取各个类标记在各个特征上的均值
clf.theta_

#sigma_属性:获取各个类标记在各个特征上的方差
clf.sigma_

#partial_fit(X, y, classes=None, sample_weight=None):增量式训练,当训练数据集数据量非常大,不能一次性全部载入内存时,可以将数据集划分若干份,重复调用partial_fit在线学习模型参数,在第一次调用partial_fit函数时,必须制定classes参数,在随后的调用可以忽略
clf.partial_fit(X,y,classes=[1,2],sample_weight=np.array([0.05,0.05,0.1,0.1,0.1,0.2,0.2,0.2]))
 
#predict(X):直接输出测试集预测的类标记
clf.predict([[-6,-6],[4,5]])

#predict_proba(X):输出测试样本在各个类标记预测概率值
clf.predict_proba([[-6,-6],[4,5]])

#predict_log_proba(X):输出测试样本在各个类标记上预测概率值对应对数值
clf.predict_log_proba([[-6,-6],[4,5]])

#score(X, y, sample_weight=None):返回测试样本映射到指定类标记上的得分(准确率)
clf.score([[-6,-6],[-4,-2],[-3,-4],[4,5]],[1,1,2,2])
多项式朴素贝叶斯(sklearn)
"""
多项式朴素贝叶斯:sklearn.naive_bayes.MultinomialNB(alpha=1.0, fit_prior=True, class_prior=None)主要用于离散特征分类,例如文本分类单词统计,以出现的次数作为特征值

参数说明:
alpha:浮点型,可选项,默认1.0,添加拉普拉修/Lidstone平滑参数
fit_prior:布尔型,可选项,默认True,表示是否学习先验概率,参数为False表示所有类标记具有相同的先验概率
class_prior:类似数组,数组大小为(n_classes,),默认None,类先验概率
"""

#利用MultinomialNB建立简单模型
import numpy as np
from sklearn.naive_bayes import MultinomialNB
X = np.array([[1,2,3,4],[1,3,4,4],[2,4,5,5],[2,5,6,5],[3,4,5,6],[3,5,6,6]])
y = np.array([1,1,4,2,3,3])
clf = MultinomialNB(alpha=2.0)
clf.fit(X,y)

'''
class_log_prior_:各类标记的平滑先验概率对数值,其取值会受fit_prior和class_prior参数的影响
1、若指定了class_prior参数,不管fit_prior为True或False,class_log_prior_取值是class_prior转换成log后的结果
2、若fit_prior参数为False,class_prior=None,则各类标记的先验概率相同等于类标记总个数N分之一
3、若fit_prior参数为True,class_prior=None,则各类标记的先验概率相同等于各类标记个数除以各类标记个数之和
'''
clf.class_log_prior_

#intercept_:将多项式朴素贝叶斯解释的class_log_prior_映射为线性模型,其值和class_log_propr相同
clf.intercept_

#feature_log_prob_:指定类的各特征概率(条件概率)对数值,返回形状为(n_classes, n_features)数组
clf.feature_log_prob_    #特征的条件概率=(指定类下指定特征出现的次数+alpha)/(指定类下所有特征出现次数之和+类的可能取值个数*alpha)

#coef_:将多项式朴素贝叶斯解释feature_log_prob_映射成线性模型,其值和feature_log_prob相同
clf.coef_

#feature_count_:各类别各个特征出现的次数,返回形状为(n_classes, n_features)数组
clf.feature_count_

链接:
https://blog.csdn.net/kancy110/article/details/72763276

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容

  • 朴素贝叶斯 在机器学习中,朴素贝叶斯分类器是一系列以假设特征之间强(朴素)独立下运用贝叶斯定理为基础的简单概率分类...
    七八音阅读 20,498评论 0 21
  • 1 贝叶斯方法 长久以来,人们对一件事情发生或不发生的概率,仅仅有固定的0和1,即要么发生,要么不发生。假设问那时...
    高永峰_GYF阅读 2,805评论 0 11
  • 各位小伙伴们大家好,前些日子,我看了一些关于贝叶斯方法的文章,其中以今天这一篇文章觉得最好,不仅讲的简单通俗易懂并...
    云时之间阅读 5,625评论 4 72
  • 一首歌,听到第五年 仍有撞击心灵的钝响 你的声音,简单清脆 如孩童、也如魔鬼 我欣喜它的清脆纯净,也憎恨它的魔力 ...
    Little喵喵阅读 221评论 0 0
  • 小区门口贴出讣告,九十八岁的刘伯伯驾鹤仙去。昨日便陪了母亲去峒河边上的小巷子里拜祭。自从八九岁时搬到交通局,便与刘...
    采葭小妖阅读 509评论 1 5