递归树:借助树来求解递归算法时间复杂度

递归树与时间复杂度分析

我们前面讲过,递归的思想就是,将大问题分解为小问题来求解,然后再将小问题分解为小小问题。这样一层一层地分解,直到问题的数据规模被分解得足够小,不用继续递归分解为止。

如果我们把这个一层一层的分解过程画成图,它其实就是一棵树。我们给这棵树起一个名字,叫作递归树。我这里画了一棵斐波那契数列的递归树,你可以看看。节点里的数字表示数据的规模,一个节点的求解可以分解为左右子节点两个问题的求解。

通过这个例子,你对递归树的样子应该有个感性的认识了,看起来并不复杂。现在,我们就来看,如何用递归树来求解时间复杂度。

归并排序的原理我就不详细介绍了,如果你忘记了,可以回看一下第 12 节的内容。归并排序每次会将数据规模一分为二。我们把归并排序画成递归树,就是下面这个样子:

因为每次分解都是一分为二,所以代价很低,我们把时间上的消耗记作常量 1。归并算法中比较耗时的是归并操作,也就是把两个子数组合并为大数组。从图中我们可以看出,每一层归并操作消耗的时间总和是一样的,跟要排序的数据规模有关。我们把每一层归并操作消耗的时间记作 n。

现在,我们只需要知道这棵树的高度 h,用高度 h 乘以每一层的时间消耗 n,就可以得到总的时间复杂度 O(n∗h)。

从归并排序的原理和递归树,可以看出来,归并排序递归树是一棵满二叉树。我们前两节中讲到,满二叉树的高度大约是 log2n,所以,归并排序递归实现的时间复杂度就是 O(nlogn)。我这里的时间复杂度都是估算的,对树的高度的计算也没有那么精确,但是这并不影响复杂度的计算结果。

利用递归树的时间复杂度分析方法并不难理解,关键还是在实战,所以,接下来我会通过三个实际的递归算法,带你实战一下递归的复杂度分析。学完这节课之后,你应该能真正掌握递归代码的复杂度分析。

实战一:分析快速排序的时间复杂度

在用递归树推导之前,我们先来回忆一下用递推公式的分析方法。你可以回想一下,当时,我们为什么说用递推公式来求解平均时间复杂度非常复杂?

快速排序在最好情况下,每次分区都能一分为二,这个时候用递推公式 T(n)=2T(2n)+n,很容易就能推导出时间复杂度是 O(nlogn)。但是,我们并不可能每次分区都这么幸运,正好一分为二。

我们假设平均情况下,每次分区之后,两个分区的大小比例为 1:k。当 k=9 时,如果用递推公式的方法来求解时间复杂度的话,递推公式就写成 T(n)=T(10/n)+T(9n/10)+n

这个公式可以推导出时间复杂度,但是推导过程非常复杂。那我们来看看,用递归树来分析快速排序的平均情况时间复杂度,是不是比较简单呢?

我们还是取 k 等于 9,也就是说,每次分区都很不平均,一个分区是另一个分区的 9 倍。如果我们把递归分解的过程画成递归树,就是下面这个样子:

快速排序的过程中,每次分区都要遍历待分区区间的所有数据,所以,每一层分区操作所遍历的数据的个数之和就是 n。我们现在只要求出递归树的高度 h,这个快排过程遍历的数据个数就是 h∗n ,也就是说,时间复杂度就是 O(h∗n)。

因为每次分区并不是均匀地一分为二,所以递归树并不是满二叉树。这样一个递归树的高度是多少呢?

也就是说,对于 k 等于 9,99,甚至是 999,9999……,只要 k 的值不随 n 变化,是一个事先确定的常量,那快排的时间复杂度就是 O(nlogn)。所以,从概率论的角度来说,快排的平均时间复杂度就是 O(nlogn)。

实战二:分析斐波那契数列的时间复杂度

在递归那一节中,我们举了一个跨台阶的例子,你还记得吗?那个例子实际上就是一个斐波那契数列。为了方便你回忆,我把它的代码实现贴在这里。

int f(int n) {
  if (n == 1) return 1;
  if (n == 2) return 2;
  return f(n-1) + f(n-2);
}

这样一段代码的时间复杂度是多少呢?你可以先试着分析一下,然后再来看,我是怎么利用递归树来分析的。

我们先把上面的递归代码画成递归树,就是下面这个样子:

实战三:分析全排列的时间复杂度

前面两个复杂度分析都比较简单,我们再来看个稍微复杂的。

我们在高中的时候都学过排列组合。“如何把 n 个数据的所有排列都找出来”,这就是全排列的问题。

我来举个例子。比如,1,2,3 这样 3 个数据,有下面这几种不同的排列:

1, 2, 3
1, 3, 2
2, 1, 3
2, 3, 1
3, 1, 2
3, 2, 1

如何编程打印一组数据的所有排列呢?这里就可以用递归来实现。

如果我们确定了最后一位数据,那就变成了求解剩下 n−1 个数据的排列问题。而最后一位数据可以是 n 个数据中的任意一个,因此它的取值就有 n 种情况。所以,“n 个数据的排列”问题,就可以分解成 n 个“n−1 个数据的排列”的子问题。

如果我们把它写成递推公式,就是下面这个样子:

假设数组中存储的是1,2, 3...n。
        
f(1,2,...n) = {最后一位是1, f(n-1)} + {最后一位是2, f(n-1)} +...+{最后一位是n, f(n-1)}。

如果我们把递推公式改写成代码,就是下面这个样子:

// 调用方式:
// int[]a = a={1, 2, 3, 4}; printPermutations(a, 4, 4);
// k表示要处理的子数组的数据个数
public void printPermutations(int[] data, int n, int k) {
  if (k == 1) {
    for (int i = 0; i < n; ++i) {
      System.out.print(data[i] + " ");
    }
    System.out.println();
  }

  for (int i = 0; i < k; ++i) {
    int tmp = data[i];
    data[i] = data[k-1];
    data[k-1] = tmp;

    printPermutations(data, n, k - 1);

    tmp = data[i];
    data[i] = data[k-1];
    data[k-1] = tmp;
  }
}

如果不用我前面讲的递归树分析方法,这个递归代码的时间复杂度会比较难分析。现在,我们来看下,如何借助递归树,轻松分析出这个代码的时间复杂度。

首先,我们还是画出递归树。不过,现在的递归树已经不是标准的二叉树了。

这里我稍微说下,掌握分析的方法很重要,思路是重点,不要纠结于精确的时间复杂度到底是多少。

内容小结

今天,我们用递归树分析了递归代码的时间复杂度。加上我们在排序那一节讲到的递推公式的时间复杂度分析方法,我们现在已经学习了两种递归代码的时间复杂度分析方法了。

有些代码比较适合用递推公式来分析,比如归并排序的时间复杂度、快速排序的最好情况时间复杂度;有些比较适合采用递归树来分析,比如快速排序的平均时间复杂度。而有些可能两个都不怎么适合使用,比如二叉树的递归前中后序遍历。

时间复杂度分析的理论知识并不多,也不复杂,掌握起来也不难,但是,在我们平时的工作、学习中,面对的代码千差万别,能够灵活应用学到的复杂度分析方法,来分析现有的代码,并不是件简单的事情,所以,你平时要多实战、多分析,只有这样,面对任何代码的时间复杂度分析,你才能做到游刃有余、毫不畏惧。

课后思考

1 个细胞的生命周期是 3 小时,1 小时分裂一次。求 n 小时后,容器内有多少细胞?请你用已经学过的递归时间复杂度的分析方法,分析一下这个递归问题的时间复杂度。

参考

27 | 递归树:如何借助树来求解递归算法的时间复杂度? https://time.geekbang.org/column/article/69388

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,293评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,604评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,958评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,729评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,719评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,630评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,000评论 3 397
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,665评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,909评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,646评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,726评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,400评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,986评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,959评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,197评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,996评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,481评论 2 342

推荐阅读更多精彩内容