神经网络实践经验(2)

前言

本人萌新,请多指教

2. 1x1卷积层的作用

我们都知道,CNN强于MLP的地方在于其局部连接性减少了过拟合的可能,从而在有限的数据量下可以获取更好的模型。

而CNN是一个基于上下文的网络。对于上下文相关的数据(图像、自然语言等),有着非常理所应当、有理有据的好效果。但是如果filter的大小是1x1呢(本文只探讨2d的CNN,如果要强行说Conv1D我也没办法)?

1x1的filter貌似是上下文无关的。所以1x1的filter与3x3的filter和5x5的filter有着完全不一样的功能。

本萌新读的论文不多,但我记得1x1filter在VGG论文VERY DEEP CONVOLUTIONAL NETWORKS FOR LARGE-SCALE IMAGE RECOGNITION中出现过。VGG指出有1x1的卷积层(VGG的C号架构)物体识别效果比没有(VGG的B号架构)效果好,但是没有3x3的卷积层(VGG的D号架构)效果好。但是并没有给出解释。(顺便一提我认为VGG是ImageNet几篇中最水的一篇,全篇就是在说他用了谁的方法没用谁的方法然后做做做做做实验)

然后1x1的使用比较引起轰动就是在Network in Network中。《Network in Network》整篇论文写的玄乎得要死,什么mlpconv啊什么得,但是实际上观察它得代码就会发现所谓得mlpconv就是1x1得卷积层。仔细想想也是那么回事,实际上1x1的filter由于卷积神经网络的操作已经可以退化为卷积层每个通道的加权求和,然后通过一层激活函数就和单层mlp无异。虽然3x3的卷积核也会有加权求和的操作,但是1x1的卷积核是脱离了上下文的加权求和操作,而3x3是带上下文的加权求和操作

Network in network
resNet

)

再然后就是Inception中的降维1x1了,我可以将一个28x28x64的卷积层强行压到28x28x20的卷积层,既不增加很多参数数量又能减少卷积层的参数数量,还能加权求和一波,简直非常好用。

inception.png

包括resNet中的先降维后升维的操作同理,既可以降低参数数量又可以保持x与F(x)形状不变,可以说是很棒了

resNet

所以总结一下,1x1的filter的作用是

  1. 增加通道之间的交流
  2. 降维或升维
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容