特征工程分析常见方法

1 概述

特征工程是一个超集,它包括特征提取、特征构建和特征选择这三个子模块。在实践当中,每一个子模块都非常重要,忽略不得。根据答主的经验,他将这三个子模块的重要性进行了一个排名,即:特征构建>特征提取>特征选择。特征工程就是一个把原始数据转变成特征的过程,这些特征可以很好的描述这些数据,并且利用它们建立的模型在未知数据上的表现性能可以达到最优(或者接近最佳性能),我认为这是在机器学习模型训练中非常关键,重要性:

1.好特征的灵活性在于它允许你选择不复杂的模型,同时运行速度也更快,也更容易理解和维护;

2.有了好的特征,即便你的参数不是最优的,你的模型性能也能仍然会表现的很nice,所以你就不需要花太多的时间去寻找最有参数,这大大的降低了模型的复杂度,使模型趋于简单


2 特征工程处理过程

1.(Task before here)

2.选择数据(Select Data): 整合数据,将数据规范化成一个数据集,收集起来.

3.数据预处理(Preprocess Data): 数据格式化,数据清理,采样等.

4.数据转换(Transform Data):这个阶段做特征工程.

5.数据建模(Model Data): 建立模型,评估模型并逐步优化.

(Tasks after here…)


我认为比较好的一些方法:

预处理

1.缺失值处理,对于一些重要的特征数据,缺失值的填充,起到很关键的作用,在本次天池大数据竞赛中,对于使用寿命缺失值填充,我选择随机森林预测的方法,对预测结果起到了很好的作用。代码如下:

随机森林预测缺失值

同时值得注意的是,以下是一种很好的可视化缺失值的方法

import missingno as msno

data.bodyType.fillna(data.bodyType.median(),inplace=True)

p=msno.bar(data)

plt.show()


特征可视化方法:

f = pd.melt(Train_data, value_vars=numeric_features)

g = sns.FacetGrid(f, col="variable",  col_wrap=2, sharex=False, sharey=False)

g = g.map(sns.distplot, "value")


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容