Pytorch学习记录-Seq2Seq模型实现(Encoder部分对比)

一点点总结
回过头看看这三天的模型,从一般LSTM Seq2Seq -> GRU Seq2Seq -> 基于注意力机制的 Seq2Seq

LSTM Seq2Seq.png

GRU Seq2Seq.png

基于注意力机制的 Seq2Seq.png

在构建模型的时候,对Encoder和Decoder进行拆分,最后通过Seq2Seq整合,如果含有Attention机制,还需要增加attention模块。

1. 先看三个模型的Encoder部分

Encoder就是处理输入Seq的模块,LSTM 和 GRU Seq2Seq比较类似,区别在于使用的cell类型(LSTM还是GRU)和输出结果(hidden,cell还是只有hidden),attention机制Seq2Seq复杂一些,因为是双向的。

1.1 LSTM Seq2Seq Encoder

2层LSTM,数据顺序从下往上。
Encoder输入参数:

  • input_dim输入encoder的one-hot向量维度,这个和输入词汇大小一致,就是输入字典长度
  • emb_dim嵌入层的维度,这一层将one-hot向量转为密度向量,256
    词嵌入在 pytorch 中只需要调用 torch.nn.Embedding(m, n) 就可以了,m 表示单词的总数目,n 表示词嵌入的维度,是一种降维,相当于是一个大矩阵,矩阵的每一行表示一个单词。
  • hid_dim隐藏和cell的状态维度,512
  • n_layers RNN层数,这里就是2
  • dropout是要使用的丢失量。这是一个防止过度拟合的正则化参数,0.5

Encoder返回参数:

  • hidden,隐藏状态
  • cell,单元状态
    看一下实现
class Encoder(nn.Module):
    def __init__(self, input_dim, emb_dim, hid_dim, n_layers, dropout):
        super(Encoder,self).__init__()
        self.input_dim=input_dim
        self.emb_dim=emb_dim
        self.hid_dim=hid_dim
        self.n_layers=n_layers
        self.dropout=dropout
        
        self.embedding=nn.Embedding(input_dim,emb_dim)
        self.rnn=nn.LSTM(emb_dim,hid_dim,n_layers,dropout=dropout)
        self.dropout=nn.Dropout(dropout)
    def forward(self, src):
        embedded=self.dropout(self.embedding(src))
        outputs, (hidden,cell)=self.rnn(embedded)
        return hidden ,cell

1.2 GRU Seq2Seq Encoder

和LSTM比较类似,做了单层GRU,dropout不再作为参数传入GRU,返回结果只有hidden状态
Encoder输入参数:

  • input_dim输入encoder的one-hot向量维度,这个和输入词汇大小一致,就是输入字典长度
  • emb_dim嵌入层的维度,这一层将one-hot向量转为密度向量,256
    词嵌入在 pytorch 中只需要调用 torch.nn.Embedding(m, n) 就可以了,m 表示单词的总数目,n 表示词嵌入的维度,是一种降维,相当于是一个大矩阵,矩阵的每一行表示一个单词。
  • hid_dim隐藏和cell的状态维度,512
  • dropout是要使用的丢失量。这是一个防止过度拟合的正则化参数,0.5

Encoder返回参数:

  • hidden,隐藏状态
    看一下实现
class Encoder(nn.Module):
    def __init__(self, input_dim, emb_dim, hid_dim, dropout):
        super(Encoder,self).__init__()
        
        self.input_dim=input_dim
        self.emb_dim=emb_dim
        self.hid_dim=hid_dim
        self.dropout=dropout
        
        self.embedding=nn.Embedding(input_dim,emb_dim)
        self.rnn=nn.GRU(emb_dim,hid_dim)
        self.dropout=nn.Dropout(dropout)
    def forward(self, src):
        embedded=self.dropout(self.embedding(src))
        outputs, hidden=self.rnn(embedded)
        return hidden

1.3 attention Seq2Seq Encoder

因为attention机制这个差别就比较大,使用单层GRU,通过bidirectional RNN,每层可以有两个RNN网络,这样就可以从左到右,从右到左对输入seq进行观察,得到上下文向量,从某种意义上说,是一种对文本的理解。
Encoder输入参数:

  • input_dim输入encoder的one-hot向量维度,这个和输入词汇大小一致,就是输入字典长度
  • emb_dim嵌入层的维度,这一层将one-hot向量转为密度向量,256
    词嵌入在 pytorch 中只需要调用 torch.nn.Embedding(m, n) 就可以了,m 表示单词的总数目,n 表示词嵌入的维度,是一种降维,相当于是一个大矩阵,矩阵的每一行表示一个单词。
  • enc_hid_dim encoder隐藏和cell的状态维度,512
  • dec_hid_dim decoder隐藏和cell的状态维度,512
  • dropout是要使用的丢失量。这是一个防止过度拟合的正则化参数,0.5

Encoder返回参数:

  • outputs的大小为[src长度, batch_size, hid_dim num_directions],其中hid_dim是来自前向RNN的隐藏状态。这里可以将(hid_dim num_directions)看成是前向、后向隐藏状态的堆叠。h_1 = [h_1^\rightarrow; h_{T}^\leftarrow], h_2 = [h_2^\rightarrow; h_{T-1}^\leftarrow] ,我们也可以将所有堆叠的编码器隐藏状态表示为H = \{h_1,h_2,...,h_T \}
  • hidden的大小为[n_layers num_directions, batch_size, hid_dim],其中[-2,:,:]是在结束最后时间步(即在看到最后一个单词之后)给出顶层前向RNN隐藏状态。[-1,:,:]是在结束最后时间步之后(即在看到句子中的第一个单词之后)给出顶层后向RNN隐藏状态。

看一下实现

class Encoder(nn.Module):
    def __init__(self, input_dim, emb_dim, enc_hid_dim, dec_hid_dim, dropout):
        super(Encoder,self).__init__()
        
        self.input_dim=input_dim
        self.emb_dim=emb_dim
        self.enc_hid_dim=enc_hid_dim
        self.dec_hid_dim=dec_hid_dim
        self.dropout=dropout
        
        self.embedding=nn.Embedding(input_dim,emb_dim)
        self.rnn=nn.GRU(emb_dim,enc_hid_dim,bidirectional=True)
        self.fc=nn.Linear(enc_hid_dim*2,dec_hid_dim)
        self.dropout=nn.Dropout(dropout)
    def forward(self, src):
        embedded=self.dropout(self.embedding(src))
        outputs, hidden=self.rnn(embedded)
        hidden = torch.tanh(self.fc(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)))
        return outputs, hidden
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,456评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,370评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,337评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,583评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,596评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,572评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,936评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,595评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,850评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,601评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,685评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,371评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,951评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,934评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,167评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,636评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,411评论 2 342

推荐阅读更多精彩内容